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Abstract 

 

In 1978 Caccetta and Haggkvist proposed the following 

conjecture for strict digraphs, which has two forms: 

a directed graph of order n  be        Let  The first form is:

and girth g such that         for every vertex x. Then   

        . 

: If G is a directed graph with n vertices and The second form is

if each vertex of G has outdegree at least k, then G contains a 

directed cycle of length at most  
 

 
 . 

Here we investigate two main approaches to prove the 

conjecture for k≤5:  

(1) The first approach is by Hamidoune, which proves the 

conjecture for k=3. 

(2) The second approach is by Hoang and Reed, which proves 

the conjecture for k≤5. 
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 انمهخص

 انًىجهة انفزضٍة انتانٍة نهبٍاَات Haggkvistو  Caccetta اقتزح, 8791فً عاو 

 :انبسٍطة انتً نها شكلاٌ

يٍ انزؤوس و كاٌ إذا كاٌ انبٍاٌ ج بٍاَاً يىجهاً و ٌحتىي عهى ٌ  :انشكم الأول

وكاٌ د, هق فً ج ٌساوي لطىل أصغز يسار يغ
+

فإٌ , فً ج س رأس مك نك≤(س)

 .8(+8-ل)ك≤ٌ

وكاٌ , إذا كاٌ انبٍاٌ ج بٍاَاً يىجهاً و ٌحتىي عهى ٌ يٍ انزؤوس :انشكم انثاني

د
+

 يسار يغهق بطىل  ٌحتىي عهى فإٌ ج, فً ج نكم سك ≤(س)
ٌ

ك
 .عهى الأكثز  

 :5≥ك قٍى سُقىو بتفحص طزٌقتٍٍ أساسٍتٍٍ نبزهاٌ هذِ انفزضٍة نكم

 .3=حٍث قاو ببزهاٌ انفزصٍة نقًٍة ك, Hamidouneانطزٌقة الأونى بىساطة ( 8)

نقٍى حٍث قايا ببزهاٌ انفزضٍة Reed و Hoang انطزٌقة انثاٍَة بىساطة  (2)

 .5≥ك
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Chapter 1

Preliminaries

In this chapter we present some elementary concepts from Graph Theory that we need

in the sequel. Our main definitions and results can be found in [1]. We begin with the

following definitions.

1.1 Definitions

Definition 1.1.1. A graph G is an ordered pair (V (G), E(G)) consisting of a set V (G) of

vertices and a set E(G) of edges, disjoint from V (G), together with an incidence function

ψG that associates with each edge of G an unordered pair (not necessarily distinct) of

vertices of G. If e is an edge and u and v are vertices such that ψG(e) = {u, v}, then e

is said to join u and v, and the vertices u and v are called the ends of e. For notational

simplicity, we write uv for the unordered pair {u, v}.

Here we are interested in directed graphs.

Definition 1.1.2. A directed graph D is an ordered pair (V (D), E(D)) consisting of a set

V (D) of vertices and a set E(D) of arcs, disjoint from V (D), together with an incidence

function ψD that associates with each arc of D an ordered pair (not necessarily distinct)

of vertices of D. If a is an arc and u and v are vertices such that ψD(a) = (u, v), then a

is said to connect u to v, the vertex u is the tail (origin) of a and the vertex v is the head

of a, they are the two ends of a. For notational simplicity, we write uv for the ordered

pair (u, v). If an arc connects a vertex to itself then we call it a loop, and if there are

more than one arc with the same tail and head then we call them parallel arcs.

2
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Definition 1.1.3. A strict directed graph is one with no loops or parallel arcs. The order

(cardinality) of a finite directed graph G, denoted by |G|, is its number of vertices and the

size is its number of arcs.

Definition 1.1.4. A subgraph H of a graph G is a graph obtained from G by deleting

some vertices or edges of G.

Occasionally, when the orientation of an arc is irrelevant to the discussion, we shall

refer to the arc as an edge of the directed graph. Moreover, we shall refer to the directed

graph as G instead of D.

Definition 1.1.5. If uv is an arc in a directed graph G, then we call u the inneighbour

of v and v is the outneighbour of u. The set of all inneighbours of a vertex v is denoted

by N−(v), and the set of all outneighbours is denoted by N+(v). The number of the

inneighbours of a vertex v is called the indegree of v, denoted by d−(v), and the number

of the outneighbours of v is called the outdegree of v, denoted by d+(v).

For convenience, we abbreviate the term ‘directed graph’ to digraph.

Definition 1.1.6. A directed path is a strict digraph whose vertices can be arranged in

a sequence such that each vertex is connected to its successor in the sequence and there

is no repetition of vertices. A maximal path is the longest path in the graph. Likewise,

a directed cycle on three or more vertices is a closed directed path, a cycle on one vertex

consists of a single vertex with a loop, a cycle of length two consists of two vertices which

are connected to each other. A digraph is called acyclic if it contains no cycles. The length

of a path or a cycle is the number of its arcs.

Definition 1.1.7. The girth of a digraph G is the length of the shortest directed cycle in

G and is denoted by g(G). A transitive triangle consists of three vertices {a, b, c} such

that if a is connected to b and b is connected to c, then a is connected to c. The distance

between two vertices u and v is the length of the shortest path that connects u to v and is

denoted by dist(u, v).

Definition 1.1.8. Two digraphs G and G′ are said to be isomorphic, written G ∼= G′, if

there are bijections θ : V (G)→ V (G′) and φ : E(G)→ E(G′) such that ψG(a) = (u, v) if

and only if ψG′(φ(a)) = (θ(u), θ(v)). Such a pair of mappings is called an isomorphism

between G and G′.
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1.2 Theory

With each digraph G, one may associate another digraph
←−
G , obtained by reversing the

direction of each arc of G. The digraph
←−
G is called the converse of G. Because the

converse of the converse is just the original digraph, the converse of a digraph can be

thought of as its ‘directional dual’. This point of view gives rise to a simple yet useful

principle.

Principle of Directional Duality 1.2.1. Any statement about a digraph has an ac-

companying ‘dual’ statement, obtained by applying the statement to the converse of the

digraph and reinterpreting it in terms of the original digraph.

In view of the above principle, we have the following proposition.

Proposition 1.2.1. Let G be a digraph with m arcs, then
∑
v∈V

d−(v) =
∑
v∈V

d+(v) = m.

Proof. Let G be a digraph and let v ∈ V , then since the indegree of v is d−(v), then

there are d−(v) arcs connected to v, and each arc connects between two vertices only.

This implies that
∑
v∈V

d−(v) = m. Now, consider the converse of G, by the Principle of

Directional Duality, we apply the previous statement to
←−
G , we deduce that

∑
v∈
←−
V

d−(v) = m,

because the number of arcs in
←−
G is the same as in G. Since the indegree of a vertex

v ∈ G equals the outdegree of the same vertex v ∈
←−
G , so

∑
v∈
←−
V

d−(v) =
∑
v∈V

d+(v), and so∑
v∈V

d−(v) =
∑
v∈V

d+(v) = m.

Proposition 1.2.2. Let G be a digraph of order n in which each vertex has outdegree at

least one, then G contains a directed cycle of length at most n.

Proof. Let G be a digraph, choose a maximal path P in G, then P contains at most n

vertices. Now, let v be the last vertex in P . Since v has outdegree at least one, then v

will be connected to a vertex u in G. By the maximality of P , u must be in P . Therefore,

G contains a cycle of length at most n.

Recall that dxe denotes the least integer greater than or equal to x, and bxc denotes

the greatest integer less than or equal to x. Now, we give some standard results about

the greatest integer and least integer that are needed later.
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Proposition 1.2.3. Let t ∈ Z, then t ≥ 2
⌈
1
2
t
⌉
− 1.

Proof. Let t ∈ Z, then:

(1) If t is an even integer, then 2
⌈
1
2
t
⌉

= 21
2
t = t, so t ≥ t− 1.

(2) If t is odd an integer, then 2
⌈
1
2
t
⌉

= 2

(
t+ 1

2

)
= t+ 1, so t = t+ 1− 1.

From (1) and (2) we see that t ≥ 2
⌈
1
2
t
⌉
− 1.

Proposition 1.2.4. Let t ∈ Z, then
⌈
1
2
t
⌉

+
⌊
1
2
t
⌋

= t.

Proof. Let t ∈ Z, then:

(1) If t is an even integer, then
⌈
1
2
t
⌉

+
⌊
1
2
t
⌋

= 1
2
t+ 1

2
t = t.

(2) If t is an odd integer, then
⌈
1
2
t
⌉

+
⌊
1
2
t
⌋

=
t+ 1

2
+
t− 1

2
= t.

From (1) and (2) we see that
⌈
1
2
t
⌉

+
⌊
1
2
t
⌋

= t.

Proposition 1.2.5. Let x ∈ R, k ∈ Z, then bx+ kc = bxc+ k.

Proof. Since x ∈ R, then x = m + s, where m ∈ Z, and 0 ≤ s < 1. Now, bx + kc =

bm+ k + sc = m+ k = bm+ sc+ k = bxc+ k.

Proposition 1.2.6. Let n, k ∈ N, then
⌈n
k

⌉
≤ n− 1

k
+ 1.

Proof. Let n, k ∈ N, then observe that
⌈n
k

⌉
=
n

k
+ s, where 0 ≤ s < 1, so s =

l

k
, where

l ∈ Z+, and 0 ≤ l ≤ k−1, which implies that
⌈n
k

⌉
=
n

k
+
l

k
. But

n− 1

k
+1 =

n

k
+1− 1

k
=

n

k
+
k − 1

k
, so it is clear that

⌈n
k

⌉
≤ n− 1

k
+ 1.

Proposition 1.2.7. Let n, k ∈ N, then
⌈n
k

⌉
=

⌊
n− 1

k
+ 1

⌋
.

Proof. Let n, k ∈ N, then observe that
⌈n
k

⌉
=
n

k
+ s, where 0 ≤ s < 1. By Proposition

1.2.6,
⌈n
k

⌉
≤ n− 1

k
+ 1 =

n

k
+
k − 1

k
. But

k − 1

k
= s + t, where 0 ≤ s, t < 1, and

0 ≤ s + t < 1. Note that
n

k
+ s ∈ N. Therefore, by Proposition 1.2.5, we have

⌈n
k

⌉
=

n

k
+ s =

n

k
+ s+ btc =

⌊n
k

+ s+ t
⌋

=

⌊
n

k
+
k − 1

k

⌋
=

⌊
n− 1

k
+ 1

⌋
.
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Chapter 2

Caccetta-Häggkvist Conjecture

2.1 Introduction

In 1978 Caccetta and Häggkvist [2] proposed the following conjecture for strict digraphs

which has two forms. The first form is:

Conjecture 2.1.1. [3] Let G = (V,E) be a directed graph of order n and girth g such

that d+(x) ≥ k for every vertex x. Then n ≥ k(g − 1) + 1.

The second form is:

Conjecture 2.1.2. [5] If G is a directed graph with n vertices and if each vertex of G

has outdegree at least k, then G contains a directed cycle of length at most
⌈n
k

⌉
.

Now, we show that these two forms are equivalent. First, we show that the first form

implies the second form. To prove this, let G be a directed graph of order n and girth g

such that d+(x) ≥ k for every vertex x, then we know that n ≥ k(g − 1) + 1, and G has

a directed cycle of length g. But g ≤ n− 1

k
+ 1, and we know that g ∈ N. Therefore,

g ≤
⌊
n− 1

k
+ 1

⌋
. By Proposition 1.2.7,

⌈n
k

⌉
=

⌊
n− 1

k
+ 1

⌋
, so g ≤

⌈n
k

⌉
. But if G is a

directed graph with n vertices and if each vertex of G has outdegree at least k, then by

Proposition 1.2.2, G contains a directed cycle, so we deduce that G contains a directed

cycle of length at most
⌈n
k

⌉
. This proves that the first form implies the second form.

Next, we show that the second form implies the first form. To prove this, let G be a

directed graph with n vertices such that each vertex of G has outdegree at least k, then

we know that G contains a directed cycle of length at most
⌈n
k

⌉
. Since G has girth g,

6



2.2. FIRST APPROACH 7

then g ≤
⌈n
k

⌉
. By Proposition 1.2.6,

⌈n
k

⌉
≤ n− 1

k
+ 1, so g ≤ n− 1

k
+ 1, which implies

that n ≥ k(g − 1) + 1. This proves that the second form implies the first form.

For convenience, we abbreviate Caccetta-Häggkvist conjecture as C-H conjecture.

There are several approaches to prove the C-H conjecture for some values of k. This

conjecture was proved for:

(1) k = 2 by Caccetta and Häggkvist [2].

(2) k = 3 by Hamidoune [3].

(3) k = 4 and k = 5 by Hoàng and Reed [5].

(4) k ≤
√
n

2
by Shen [6].

(5) Cayley graphs (which implies all vertex transitive graphs using coset representations)

by Hamidoune [7].

Also Shen [8] proved that if d+(u) + d+(v) ≥ 4 for all (u, v) ∈ E(G), then g ≤
⌈n

2

⌉
.

Here, we shall consider approaches (2) and (3) above to prove the C-H conjecture for

k ≤ 5.

Now, we explain briefly each of these two approaches.

2.2 First approach

In 1982 Hamidoune [3] proved the C-H conjecture for k = 3, using the first form of the

C-H conjecture. To prove the conjecture for k = 3, it is enough to prove it for a directed

graph G in which d+(x) = 3, for all x ∈ G. To see this, let G′ be a subgraph of G, where

d+(x) = 3, for all x ∈ G. Then |G| ≥ |G′|, because we may delete some vertices. If we

prove that the conjecture is true for G′, then |G′| ≥ k(g(G′)− 1) + 1. But we know that

g(G′) ≥ g(G), because we may delete some edges, so k(g(G′)− 1) + 1 ≥ k(g(G)− 1) + 1,

which implies that |G| ≥ |G′| ≥ k(g(G′) − 1) + 1 ≥ k(g(G) − 1) + 1. Therefore, it is

enough to consider a directed graph G in which each vertex has outdegree 3.

Now, we show that the C-H conjecture is true for g(G) ≤ 3, for any value of k.
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(1) If g(G) = 1, then G has a loop. Since n ≥ k(0) + 1, the C-H conjecture holds for

g(G) = 1.

(2) If g(G) = 2, then there exists a vertex v which is connected to a vertex u and u is

connected to v. But the vertex v is connected to at least k vertices, so n ≥ k + 1 =

k(2− 1) + 1. Hence the C-H conjecture holds for g(G) = 2.

(3) If g(G) = 3, then by Proposition 1.2.1
∑
v∈G

d+(v) =
∑
v∈G

d−(v) = nk, so there exists

a vertex y ∈ G such that d−(y) ≥ k, otherwise if for every y ∈ G, d−(y) < k,

then
∑
y∈G

d−(y) < nk, a contradiction. Now, N+(y)
⋂
N−(y) = ∅, otherwise if x ∈

N+(y)
⋂
N−(y), then {y, x, y} is a directed cycle, and so g(G) = 2, a contradiction.

Therefore, n ≥ k + k + 1, so n ≥ 2k + 1 = k(3 − 1) + 1. This proves that the C-H

conjecture is true for g(G) = 3.

Therefore, we assume that G is a directed graph in which each vertex has outdegree 3 and

g(G) ≥ 4. We use the following theorem in our construction. The proof of this theorem

can be found in [4].

Theorem 2.2.1. [3] Let G = (V,E) be a directed graph with girth g such that d+(x) ≥ 3

and d−(x) ≥ 3 for all x ∈ G. Then |V | ≥ 3g − 2.

In view of the above theorem we may assume thatG has a vertex y such that d−(y) ≤ 2,

otherwise if d−(y) ≥ 3 for all y in G, then by the above theorem n ≥ 3g−2 = 3(g−1)+1,

and we are done.

Therefore, let G = (V,E) be a directed graph such that d+G(x) = 3 for every vertex x.

Assume that G has girth at least 4 and contains a vertex of indegree at most 2. We shall

construct a directed graph G∗ such that |G∗| = |G| − 3, and d+G∗(x) = 3 for every vertex

x of G∗. This construction will be applied to a counterexample of minimum order to C-H

conjecture. This counterexample must have a girth at least 4, and by Theorem 2.2.1 it

must contain a vertex of indegree at most 2.

2.3 Second approach

In 1987 Hoàng and Reed [5] proved the C-H conjecture for k ≤ 5, using the second form

of the C-H conjecture. In order to prove the C-H conjecture for k ≤ 5, we show first that
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if the conjecture fails for a small value of k, then it must fail on a reasonably small graph.

The main results are based on the following theorem whose proof is given in Chapter 4.

Theorem 2.3.1. [5] Suppose that the C-H conjecture is not true. Let k1 be the smallest

k for which the C-H conjecture does not hold. Then the conjecture fails on some graph G,

with minimal outdegree k1, such that G has at most 3k21 vertices.
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Chapter 3

C-H Conjecture for k = 3

3.1 Introduction

In 1982 Hamidoune [3] proved the C-H conjecture for k = 3, using the first form of the

C-H conjecture. In this chapter we consider his approach. We shall use the first form of

the C-H conjecture.

Conjecture 3.1.1. [3] Let G = (V,E) be a directed graph of order n and girth g such

that d+(x) ≥ k for every vertex x. Then n ≥ k(g − 1) + 1.

We shall also use the notation of [1].

3.2 Directed Graphs With Minimum Outdegree 3

Let G = (V,E) be a directed graph such that d+G(x) = 3 for every vertex x. Assume that

G has girth at least 4 and contains a vertex of indegree at most 2. We shall construct a

directed graph G∗ such that |G∗| = |G|−3, and d+G∗(x) = 3 for every vertex x of G∗. This

construction will be applied to a counterexample of minimum order to C-H conjecture.

This counterexample must have a girth at least 4, and by Theorem 2.2.1 it must contain

a vertex of indegree at most 2.

We now choose a directed path (a, b, c) of G as follows. If G has no triangles (transitive

triangle), choose (a, b, c) such that d−(c) ≤ 2. If G has a triangle, choose (a, b, c) such that

(a, c) is an edge of G. We want to construct a directed graph G∗ = (V − T,E∗), where

T = {a, b, c} such that d+G∗(u) = 3 for every vertex u of V − T . E∗ consists of the arcs

10



3.2. DIRECTED GRAPHS WITH MINIMUM OUTDEGREE 3 11

of GV−T and some arcs added to replace the arcs of ω+(V − T, T ), where ω+(V − T, T )

represents the set of arcs from V − T to T . We will assign to each added edge a label

and a type. The label is an element of T and the type is a number which measures the

transitions we need to transform this edge into a path of G containing the label. For each

added edge we will define precisely the label and the type.

Let u ∈ ω−(T ), where ω−(T ) represents the set of vertices connected to T . In order to

have d+G∗(u) = 3, we shall add |ω+(u, T )| edges with origin u. We consider the following

cases:

(I) N+(u)
⋂
T = {x}, so there exists only one arc from u to {a, b, c}.

(1) If there exists v ∈ V − T such that (x, v) ∈ E, and (u, v) /∈ E, then replace

(u, x) by (u, v). Here we have three possibilities for x as shown below:

Furthermore, if x = a and G has no triangles, then d−(c) ≤ 2, and since

d+(a) = 3, then there exists three arcs from a to three vertices {b, b1, b2}. Since

d−(c) ≤ 2, then one of b1 or b2 does not have an arc (b1, c) or (b2, c). There-

fore, there exists v such that (a, v) ∈ E and (v, c) /∈ E, which implies that

v ∈ N+(a)−N−(c). We remove (u, a) and add (u, v) as shown below:
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(2) Otherwise, for every v ∈ V − T , (x, v) /∈ E or (u, v) ∈ E, which is equivalent

to saying that for every v ∈ V −T , if (x, v) ∈ E then (u, v) ∈ E, which implies

that N+(x)− T ⊆ N+(u)− T . This means that we have the following cases:

We can see that in all cases G has a triangle {u, v, x}, and hence (a, c) ∈ E.

Note that x = a or x = b, because we shall show that x 6= c. In case x = c,

we get v1, v2, v3 ∈ V − T such that c is connected to v1, v2, v3, which implies

that (u, vi) ∈ E, i = 1, 2, 3. But (u, c) ∈ E, which leads to d+(u) ≥ 4, a

contradiction.

Now, G has a triangle (u, x, v1), where v1 = v and v1 ∈ N+(x) − T . If there

exists v2 ∈ V − T such that (x, v1), (v1, v2) ∈ E but (u, v2) /∈ E. We replace

(u, x) by (u, v2), as shown below:
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(3) Otherwise, we have for every v ∈ V − T if (x, v) ∈ E then (u, v) ∈ E, and for

every v2 ∈ V − T , if (x, v1) ∈ E and (v1, v2) ∈ E then (u, v2) ∈ E. Here we

have x = a or x = b. But as can be seen in the following graph, the case x = b

is impossible, because if x = b, let N+(b) = {c, v, v1}, then {b, v, v1} ⊆ N+(u).

Since the outdegree of v is 3 and b /∈ N+(v), then there exists v2 /∈ {b, v, v1}
such that (v, v2) ∈ E. Hence, (u, v2) ∈ E. This implies that d+(u) ≥ 4, a

contradiction.

This means that x = a and we have the following situation:
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There is only one possible v1 because d+(a) = 3, it could be that (v, b) ∈ E and

(v, c) ∈ E, but (v, a) /∈ E, (v, u) /∈ E, so there exists at least a vertex v2 such

that (v1, v2) ∈ E, so by above (u, v2) ∈ E. Note that (v2, a) /∈ E because g 6= 3,

(v2, v1) /∈ E and (v2, u) /∈ E because g 6= 2. Now, since d+(v2) = 3 then there

exists at least one v3 such that (v2, v3) ∈ E, but (u, v3) /∈ E because d+(u) = 3.

Here, we have v1, v2, v3 ∈ V −T such that (a, v1) ∈ E, (v1, v2) ∈ E, (u, v1) ∈ E,

(u, v2) ∈ E, and (v2, v3) ∈ E, but (u, v3) /∈ E, replace (u, a) by (u, v3).

This completes dealing with the case N+(u)
⋂
T = {x}.

(II) |N+(u)
⋂
T | ≥ 2 and c ∈ N+(u).

This means that N+(u)
⋂
T = {a, b, c}, {a, c}, or {b, c}, as shown below:
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In all these cases, we need to show that there exists v ∈ N+(c)−N+(u) such that

(u, v) ∈ E.

(1) If N+(u)
⋂
T = {a, b, c}, then since G contains a triangle {u, b, a} we have

(a, c) ∈ E. Since d+(c) = 3, then there exists v1, v2, v3 ∈ V − T such that

(c, vi) ∈ E, i = 1, 2, 3. Now, because we already have d+(u) = 3, then replace

(u, a), (u, b) and (u, c) by (u, vi), i = 1, 2, 3, as shown below:

(2) If N+(u)
⋂
T = {a, c}, then d+(c) = 3, but (c, a) /∈ E, (c, b) /∈ E, and

(c, u) /∈ E, so there exists v1, v2, v3 6= a, b, u such that (c, vi) ∈ E, i = 1, 2, 3.

At most one of them, without loss of generality v3, has (u, v3) ∈ E because

d+(u) = 3, which implies that (u, v1) /∈ E and (u, v2) /∈ E, so replace (u, a) and

(u, c) by (u, v1) and (u, v2), as shown below:

(3) If N+(u)
⋂
T = {b, c}, then proceeding as in the previous case, we have the

following case as shown below:
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Note that (a, c) ∈ E, because G contains a triangle {u, b, c}. Replace (u, b) and

(u, c) by (u, v1) and (u, v2).

(III) N+(u)
⋂
T = {a, b}, and since we have a triangle, then (a, c) ∈ E, as shown below:

Let N+(b) = {b1, b2, c}, N+(a) = {a1, b, c}. Note that a1 may be b1 or b2.

Now, ({a1, b1, b2})
⋂
{u, a, b} = ∅, otherwise

If a1 = u, then g = 2.

If a1 = b, then we get multiple edges.

If a1 = a, them g = 1.

If b1 = u, then g = 2.

If b1 = b, then g = 1.

If b1 = a, them g = 2.

The other cases can be done similarly, and in all cases we get a contradiction.

(1) If a1 /∈ {b1, b2}, then |{a1, b1, b2} − N+(u)| = |{a1, b1, b2} − {a, b, x}| ≥ 2,

with equality when x ∈ {a1, b1, b2}. Let {α, β} ⊆ {a1, b1, b2} − N+(u), so

{α, β} = {a1, b1}, {a1, b2}, or {b1, b2}. For each case, when we delete the ver-
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tices {a, b, c}, we add the edges (u, α) and (u, β) of type 1. If α = a1, then the

added edge (u, α) will be labelled a. Similarly, if β = a1, then the added edge

(u, β) will be labelled a. Otherwise, the label will be b, as shown below:

(2) If a1 ∈ {b1, b2}, then u can be connected to one of the vertices b1 or b2 but not

both, because otherwise if u is connected to both b1 and b2, then d+(u) ≥ 4,

which is a contradiction.

Assume, without loss of generality that b2 /∈ N+(u), so we have the following

two cases as shown below:
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Now, we have two cases:

(i) If b1 /∈ N+(u), then we replace (u, a) and (u, b) by (u, b1) and (u, b2), as

shown below:

(ii) If b1 ∈ N+(u), then N+(b1)
⋂
{u, a, b} = ∅, otherwise we have g(G) at

most 3. Assume that (b1, c), (b1, b2) ∈ E. Since d+(b1) = 3, then there

exists v ∈ N+(b1) − {u, a, b, c, b2}. Also b1 6= v, so we replace (u, a) and

(u, b) by (u, b2) and (u, v) as shown below:
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Now, we define a directed graph R = ({a, b, c, d}, E) as shown below:

Let G∗ be the graph G after deleting the vertices of T = {a, b, c} and the edges connected

to it, and adding the edges as in the 17 cases above. It is clear by construction that

d+G∗(u) = 3 for all u ∈ G, where V (G∗) = V (G) − {a, b, c}. By looking at the 17 cases

above, we note the following:

Remark 1. Every arc labelled c is of type 1.

Remark 2. Every arc labelled b is of type 1 or 2.

Remark 3. If G∗ contains an arc of type 2 labelled b, then G contains a subgraph isomor-

phic to R.
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If this arc arises by I(2), then take N+(b) − {c} = {b1, b2}. We have (u, b), (u, b1),

and (u, b2) ∈ E. The mapping u → a, b → b, b1 → c, b2 → d induces an isomorphism

from the subgraph generated by {u, b, b1, b2} onto R as shown below:

If this arc arises by III(2.ii), then in both cases the mapping a→ a, b→ b, c→ c, a1 → d

induces an isomorphism from the subgraph generated by {a, b, c, a1} onto R.

Remark 4. If G contains no triangles, then all added arcs are of type 1.

Let C be a cycle of G, x and y be two vertices of C. The directed path contained in

C joining x to y will be denoted by C(x, y).

The following lemma uses the terminology defined above.

Lemma 3.2.1. [3] Let C be a cycle of G∗ of length at most g − 2. Then G contains a

triangle. Furthermore, C contains exactly two arcs not belonging to E, of the form (u, v)

and (v, w), where (u, v) is of label a and (v, w) is of label b and type 2.

Proof. Let C be a cycle of G∗ of length at most g− 2, and let p be the number of arcs of

E∗−E contained in C. This means that C contains p added edges. We prove the following:

(1) p ≥ 2. Suppose on the contrary that p ≤ 1. If p = 0, then C is in E which is

impossible because the length of C ≤ g − 2 < g. If p = 1, then C contains exactly one

added arc. Since each arc not belonging to E can be replaced by two arcs of E as can be

seen in the cases we constructed, so C can be transformed to a cycle of length at most

g − 1 in G which contradicts the fact that the girth of G is g.

This proves that C contains at least two new arcs.

Define an order relation on T by setting a < b < c.
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Let (u1, v1) be an arc labelled x1 and (u2, v2) be an arc labelled x2 such that x1 ≤ x2

and C(v2, u1) contains only arcs of G. We assume u1 6= u2 (such vertices exist since

d−(T ) ≥ 2). Consider C ′ = C(v2, u1) + (u1, x1) + µ(x1, x2) + µ′(x2, v2), where µ(x1, x2)

(respectively µ′(x2, v2)) is a path in G of length dist(x1, x2) (respectively dist(x2, v2)).

Take c(v1, u2) = |C(v1, u2)|. We have

|C ′| = |C| − 2− c(v1, u2) + 1 + dist(x1, x2) + dist(x2, v2) (3.1)

where 2 in (3.1) refers to the two added arcs and 1 refers to the arc (u1, x1). To see this

we consider the following cases:

(1) If x1 = x2 = a, then we have the following case:

(2) If x1 = a, x2 = b, then we have the following case:

(3) If x1 = a, x2 = c, then we have the following case:
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(4) If x1 = x2 = b, then we have the following case:

(5) If x1 = b, x2 = c, then we have the following case:

(6) If x1 = x2 = c, then we have the following case:
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It is easy to see that in the above cases (3.1) is satisfied.

But g ≤ |C ′| because C ′ is a cycle in G which has girth g, and we know that |C| ≤ g− 2.

We shall prove that

(2) dist(x1, x2)+dist(x2, v2) ≥ 3 + c(v1, u2).

Otherwise, if dist(x1, x2)+dist(x2, v2) ≤ 2 + c(v1, u2), then |C ′| = |C| − 2− c(v1, u2) + 1 +

dist(x1, x2)+dist(x2, v2) ≤ |C|−2−c(v1, u2)+1+2+c(v1, u2) = |C|+1 ≤ (g−2)+1 = g−1.

But |C ′| ≥ g, which implies that g ≤ |C ′| ≤ g − 1, a contradiction.

Next, we show that

(3) G contains a triangle.

Suppose the contrary, then G contains no triangles, so all added edges are of type 1, by

Remark 4. Therefore, dist(x2, v2) = 1. To see this, we consider all cases of type 1 with

label x2 = a, x2 = b, x2 = c, and G has no triangle, so the cases we need to consider are:

. Case (2) x2 = b and v2 = v, then dist(b, v) = 1.

. Case (3) x2 = c and v2 = v, then dist(c, v) = 1.

. Case (4) x2 = a and v2 = v, then dist(a, v) = 1.

. Case (9) x2 = c and v2 = v1 or v2, then dist(c, v) = 1.

In all the above cases we have dist(x2, v2) = 1. Now, by (2) dist(x1, x2)+1 ≥ 3+c(v1, u2),

which implies that dist(x1, x2) ≥ 2 + c(v1, u2). But we know that dist(x1, x2) ≤ 2, so

x1 = a, x2 = c, and v1 = u2.
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Now, x2 = c, so (u2, v2) is labelled c, hence (u2, c) ∈ E and since u2 = v1 we conclude

that (v1, c) ∈ E.

Now, since (u1, v1) is labelled a, then the only possible case is Case (4) where x2 = a,

v2 = v and dist(a, v) = 1. But we know that in this case v1 ∈ N+(a) − N−(c), so

(v1, c) /∈ E, a contradiction.

This proves that G contains a triangle.

It remains to show that C contains exactly two added edges of the form (u, v) and (v, w),

where (u, v) is of label a and (v, w) is of label b and type 2.

Next, we show that

(4) dist(x1, x2) + i ≥ 3 + c(v1, u2), where i is the type of (u2, v2).

By (2) it is enough to show that in all cases we get i ≥ dist(x2, v2). Note that by (3), G

contains a triangle, so we need only to consider the following cases:

. Case (1) x2 = a, v2 = v, i = 1, dist(a, v) = 1.

. Case (2) x2 = b, v2 = v, i = 1, dist(b, v) = 1.

. Case (3) x2 = c, v2 = v, i = 1, dist(c, v) = 1.

. Case (5) x2 = a, v2 = v2, i = 2, dist(a, v2) = 2.

. Case (6) x2 = b, v2 = v2, i = 2, dist(b, v2) ≤ 2.

. Case (7) x2 = a, v2 = v3, i = 3, dist(a, v3) = 3.

. Case (8) x2 = c, v2 = v1, v2 or v3, i = 1, dist(c, v1) =dist(c, v2) =dist(c, v3) = 1.

. Case (9) x2 = c, v2 = v1 or v2, i = 1, dist(c, v1) =dist(c, v2) = 1.

. Case (10) x2 = c, v2 = v1 or v2, i = 1, dist(c, v1) =dist(c, v2) = 1.

. Case (11) If x2 = a, v2 = a1, i = 1, dist(a, a1) = 1. If x2 = b, v2 = b1, i = 1,

dist(b, b1) = 1.

. Case (12) If x2 = a, v2 = a1, i = 1, dist(a, a1) = 1. If x2 = b, v2 = b1, i = 1,

dist(b, b1) = 1.

. Case (13) x2 = b, v2 = b1 or b2, i = 1, dist(b, b1) =dist(b, b2) = 1.
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. Case (14) x2 = b, v2 = b1 or b2, i = 1, dist(b, b1) =dist(b, b2) = 1.

. Case (15) x2 = b, v2 = b1 or b2, i = 1, dist(b, b1) =dist(b, b2) = 1.

. Case (16) If x2 = b, v2 = v, i = 2, dist(b, v) = 2. If x2 = b, v2 = b2, i = 1, dist(b, b2) = 1.

. Case (17) If x2 = b, v2 = v, i = 2, dist(b, v) = 2. If x2 = b, v2 = b2, i = 1, dist(b, b2) = 1.

Note that the Case (4) is excluded because G contains a triangle. This proves that

dist(x1, x2) + i ≥ 3 + c(v1, u2).

(5) p = 2.

Suppose the contrary, then p ≥ 3, so C contains at least 3 added edges. But C(v2, u1) is

all in G, which implies that C(v1, u2) contains p− 2 added edges, so c(v1, u2) ≥ 1 because

p − 2 ≥ 1. Therefore, by (4) we have dist(x1, x2) + i ≥ 4 and since i ≤ 3, we have

dist(x1, x2) + i ≤dist(x1, x2) + 3, so dist(x1, x2) ≥ 1, which implies that x1 6= x2.

Since x1 ≤ x2, then the possibilities of x1 and x2 are:

x1 = a, x2 = b,

or x1 = a, x2 = c,

or x1 = b, x2 = c.

Now, if x1 = a and x2 = b, then dist(x1, x2) = 1.

If x1 = a and x2 = c, then dist(x1, x2) = 1, because by (3) G contains a triangle.

If x1 = b and x2 = c, then dist(x1, x2) = 1.

So in all cases we have dist(x1, x2) = 1, we also note that x2 = b or c.

If x2 = b, then i = 1 or 2, by Remark (2).

If x2 = c, then i = 1, by Remark (1).

Therefore, we have i ≤ 2, which implies that 4 ≤ dist(x1, x2) + i ≤ 3, a contradiction.

This proves that p = 2.

(6) x1 6= x2.

Suppose the contrary, so x1 = x2, then by (4), 0 + i ≥ 3 + c(v1, u2). Moreover, we know

that i ≤ 3, so i = 3 and c(v1, u2) = 0, which implies that v1 = u2.

To get to this result, we needed that C(v2, u1) be all in G. But by (5), p = 2 which is

the number of the added edges in C, so C(v1, u2) is all in G. Applying the same argu-

ment above with (u1, v1) and (u2, v2) interchanged, we deduce that v2 = u1. Therefore,
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C = (u1 = v2, v1 = u2, u1), otherwise we get a cycle in G of length at most g − 4, a

contradiction.

Therefore, C is the cycle of two added edges as shown below:

As can be seen from above, since i = 3, then (u2, v2) is of type 3, so by Case (7) in the

construction, we see that there exists a path (u2, a, d, d
′, v2) in G such that (u2, d) ∈ E

and (u2, d
′) ∈ E, as shown below:

Since v2 = u1 we get d′ ∈ N−(v2) = N−(u1). Now, applying the same argument above

with (u1, v1) and (u2, v2) interchanged, we deduce that (u1, v1) is of type 3, so we get the

following situation:

But as can be seen from the above graph the vertex a is connected to two vertices d and

q. Moreover, we know by (3) that G contains a triangle, so (a, b) ∈ E, (a, c) ∈ E, and

since d+(a) = 3, then d = q, so we have the following situation:
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But the above situation is not possible because we have the cycle (v1, d, q
′, v1) of length

3 and we know that g(G) ≥ 4. Therefore, we must have d′ = q′, so we have the following

situation:

But the above situation is not possible too, because we have a cycle of length 2 which is

(u2 = v1, d
′, u2).

This proves that x1 6= x2.

(7) By (6) x1 6= x2 and we know that x1 ≤ x2, so the possibilities are:

x1 = a and x2 = b or c.

x1 = b and x2 = c.

But by (3), G has a triangle, which implies that d(x1, x2) = 1 and x2 = b or c. This means

that (u2, v2) is labelled b or c. Therefore, by Remarks (1) and (2), the type of (u2, v2) is

1 or 2, so i ≤ 2. Now, by (4) d(x1, x2) + i ≥ 3 + c(v1, u2), so 3 ≥ 1 + i ≥ 3 + c(v1, u2),

which implies that c(v1, u2) = 0, so v1 = u2 and 1 + i ≥ 3, so i ≥ 2, hence i = 2.

If (u2, v2) is labelled c, then by Remark (1) i = 1. Hence, (u2, v2) is labelled b of type 2.

Therefore, (u1, v1) is labelled a.

The lemma is now proved.

Theorem 3.2.1. [3] Let G = (V,E) be a directed graph such that d+(x) = 3 for every

vertex x of G. Let n be the order of G and g be its girth. Then n ≥ 3g − 2.

Proof. Suppose the contrary and let G be a counterexample of minimal cardinality. We

have seen before that G satisfies the assumptions required to construct G∗. We have

g∗ = g(G∗) ≤ g − 2, otherwise if g∗ > g − 2, then g∗ ≥ g − 1, so by the minimality of G,

the theorem applies for G∗, hence n∗ ≥ 3g∗ − 2, but n∗ = n − 3, so n − 3 ≥ 3g∗ − 2 ≥
3(g − 1)− 2 = 3g − 5, which implies that n ≥ 3g − 2, a contradiction.

Therefore, g∗ ≤ g − 2. By lemma 3.2.1, G contains a triangle and G∗ contains an arc of

type 2 labelled b. By Remark (3), G contains a subgraph isomorphic to R.

We can now construct G∗ using the triangle (a, b, c) of R. Let C be a cycle of G∗ of

minimum length g∗. By lemma 3.2.1, the unique arcs of C not in E are of the form (u, v)
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and (v, w), where (u, v) is of label a and (v, w) is of label b type 2. Now, if (u, v) is of

label a type 1, and since d+(a) = 3, then a is connected to b, c, and d. Since (u, v) is of

type 1, then d = v. But since (v, w) is of label b, then v is connected to b, so we get a

cycle of length 2 which is (v, b, v), a contradiction.

Now, if (u, v) is of label a type 2, then d is connected to v. But we know that b is

connected to d and v is connected to b, so we get a cycle of length 3 in G which is

(v, b, d, v), a contradiction.

Finally, if (u, v) is of label a type 3, then we know that |N+(d)− T | ≥ 2, because d could

be connected to c but not to a or b, so d is connected to at least two vertices in G − T .

Assume that d is connected to v′ and v′′ in G−T . Moreover, assume that v′ is connected

to v. Now, since (u, v) is of type 3, then u is connected to a, d, v′, and v′′, so d+(u) ≥ 4,

a contradiction.

The theorem is proved.
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3.3 Conclusion

We proved the C-H conjecture for k = 3. This approach is involved. In the next chapter

we will consider a more efficient approach that will prove the conjecture for k ≤ 5.
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Chapter 4

C-H Conjecture for k ≤ 5

4.1 Introduction

In 1987 Hoàng and Reed [5] proved the C-H conjecture for k ≤ 5, so in this chapter we

shall consider their approach. In order to prove the C-H conjecture for k ≤ 5, we show

first that if the conjecture fails for a small value of k, then it must fail on a reasonably

small graph. We shall use the second form of the C-H conjecture.

Conjecture 4.1.1. [5] If G is a directed graph with n vertices and if each vertex of G

has outdegree at least k, then G contains a directed cycle of length at most
⌈n
k

⌉
.

This conjecture holds for k = 1, because if G is a directed graph and if each vertex of

G has outdegree at least 1, then since G has n vertices, by Proposition 1.2.2, G contains

a cycle of length at most
⌈n

1

⌉
= n.

4.2 Minimal Digraph With Outdegree k

Theorem 4.2.1. [5] Suppose that the C-H conjecture is not true. Let k1 be the smallest

k for which the C-H conjecture does not hold. Then the conjecture fails on some graph G,

with minimal outdegree k1, such that G has at most 3k21 vertices.

Proof. Let k1 be the smallest k for which the C-H conjecture fails. Let G be the smallest

graph (with least number of vertices) on which the C-H conjecture fails for k = k1, we

need to show that n ≤ 3k21. By removing edges (if necessary) we can ensure that the

outdegree of each vertex of G is k1. Let n be the number of vertices of G and write

30
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t =

⌈
n

k1

⌉
. For any vertex x in G, we set Sx

i = {y|dist(x, y) = i} and T x
i =

i⋃
j=1

Sx
j , where

T x
i is the set of all vertices in G with distance 1, 2, . . . , i from x. Note that if i 6= j, then

Sx
i

⋂
Sx
j = ∅, because the distance from one vertex to another is unique.

Claim:

There exists a vertex x such that |T x
i | < ik1, for some integer i ≤

⌈
1
2
t
⌉

(4.1)

Note that the above claim is not true for i = 0, otherwise we have |T x
0 | < 0 which is

impossible. Also the above claim is not true for i = 1, otherwise we get |T x
1 | < k1, so

|Sx
1 | < k1, a contradiction, because the outdegree of x is k1. This implies that i ≥ 2.

Suppose that the above claim is not true, i.e. for every vertex x in G we have |T x
i | ≥ ik1

for all integers i ≤
⌈
1
2
t
⌉
.

In particular, for i =
⌈
1
2
t
⌉

we have

∣∣∣∣T x

d 12 te

∣∣∣∣ ≥ ⌈12t⌉ k1. If x, y ∈ G and if dist(x, y) = l,

then we shall call y the lth-outneighbour of x, and x the lth-inneighbour of y. Therefore,

every vertex w ∈ G which is the lth-outneighbour of v ∈ G, then v is the lth-inneighbour

of w. Observe that Sx
l is the set of all lth-outneighbours of x. Let W y

l be the set of all

lth-inneighbours of y, i.e. W y
l = {z|dist(z, y) = l}. Note that

n∑
j=1

∣∣Sxj

l

∣∣ =
n∑

j=1

∣∣W xj

l

∣∣.
Define Ux

i = {y|dist(y, x) ≤ i} =
i⋃

l=1

W x
l . Let {x1, x2, . . . , xn} be the set of all vertices of

G. Since each lth-outneighbour of some vertex is the lth-inneighbour of another vertex,

then
n∑

j=1

∣∣Sxj

l

∣∣ =
n∑

j=1

∣∣W xj

l

∣∣. Therefore

i∑
l=1

n∑
j=1

∣∣Sxj

l

∣∣ =
i∑

l=1

n∑
j=1

∣∣W xj

l

∣∣
where i = 2, 3, . . . ,

⌈
1
2
t
⌉
.

But
i∑

l=1

∣∣Sxj

l

∣∣ =
∣∣T xj

i

∣∣, and
i∑

l=1

∣∣W xj

l

∣∣ =
∣∣Uxj

i

∣∣, so

n∑
j=1

∣∣T xj

i

∣∣ =
n∑

j=1

∣∣Uxj

i

∣∣
and hence

n∑
j=1

∣∣T xj

i

∣∣
n

=

n∑
j=1

∣∣Uxj

i

∣∣
n
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By letting i =
⌈
1
2
t
⌉
, we get

n∑
j=1

∣∣∣∣T xj

d 12 te

∣∣∣∣
n

=

n∑
j=1

∣∣∣∣Uxj

d 12 te

∣∣∣∣
n

But by assumption we have

∣∣∣∣T xj

d 12 te

∣∣∣∣ ≥ ⌈12t⌉ k1, so

n∑
j=1

∣∣∣∣T xj

d 12 te

∣∣∣∣
n

≥

n∑
j=1

⌈
1
2
t
⌉
k1

n
=
n
⌈
1
2
t
⌉
k1

n
=
⌈
1
2
t
⌉
k1

Hence
n∑

j=1

∣∣∣∣Uxj

d 12 te

∣∣∣∣
n

≥
⌈
1
2
t
⌉
k1

Therefore, there exists a vertex x = xj ∈ G such that

∣∣∣∣Ux

d 12 te

∣∣∣∣ ≥ ⌈12t⌉ k1.
We know that

∣∣∣∣T x

b 12 tc

∣∣∣∣ ≥ ⌊12t⌋ k1, by taking i =
⌊
1
2
t
⌋

in our assumption.

Note that by Proposition 1.2.4, we have
⌈
1
2
t
⌉

+
⌊
1
2
t
⌋

= t, so∣∣∣∣Ux

d 12 te

∣∣∣∣+∣∣∣∣T x

b 12 tc

∣∣∣∣ ≥ ⌈12t⌉ k1+⌊12t⌋ k1 = (
⌈
1
2
t
⌉
+
⌊
1
2
t
⌋
)k1 = tk1 =

⌈
n

k1

⌉
k1 ≥

n

k1
k1 = n > n−1 = |G−{x}|.

So there exists y ∈ Ux

d 12 te
⋂
T x

b 12 tc
, because x /∈ Ux

d 12 te
and x /∈ T x

b 12 tc
.

This means that dist(x, y) ≤
⌊
1
2
t
⌋

and dist(y, x) ≤
⌈
1
2
t
⌉
.

Hence, dist(x, y)+dist(y, x) ≤
⌈
1
2
t
⌉

+
⌊
1
2
t
⌋

= t, and so G contains a cycle of length

at most t =

⌈
n

k1

⌉
, a contradiction, because by assumption G does not satisfy the C-H

conjecture. This proves (4.1).

In the remainder of the proof, x will be a vertex which satisfies (4.1) and i will be the

smallest integer for which (4.1) is satisfied with this x.

Claim:

1
2
k1 < |Sx

i | < k1 (4.2)

First, we show that |Sx
i | < k1, by the minimality of i, otherwise if |Sx

i | ≥ k1, then

|T x
i | = |Sx

1 |+ |Sx
2 |+ . . .+ |Sx

i−1|+ |Sx
i | < ik1
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So

|Sx
1 |+ |Sx

2 |+ . . .+ |Sx
i−1| < ik1 − |Sx

i | ≤ (i− 1)k1

Therefore, ∣∣T x
(i−1)

∣∣ < (i− 1)k1

which contradicts the minimality of i.

This proves that |Sx
i | < k1. Next, we show that 1

2
k1 < |Sx

i |. Write r = |Sx
i | and let F be

the subgraph of G induced by T x
i−1, as in the following graph:

Note that x is not a vertex in F . Let w ∈ Sx
i−1, the outdegree of w in G is k1, and at

most r vertices of them belong to Sx
i , and the remaining vertices must be in F . Hence,

the outdegree of w ∈ Sx
i−1 in F is at least k1 − r. Let v ∈ T x

i−2, its outdegree in G is k1,

all of which must be in F . Hence, the outdegree of v in F is k1, because v cannot be

connected to vertices from Sx
i or any other vertices not in F , otherwise if v is connected

to y not in F , then dist(x, y) ≤ dist(x, v)+dist(v, y) =dist(x, v) + 1 ≤ (i− 2) + 1 = i− 1,

a contradiction. (Because this means that y is a vertex in F ).

So the vertices of Sx
i−1 have outdegree at least k1 − r in F , and other vertices of F have

outdegree k1.

Since each vertex in F has outdegree at least k1 − r, the C-H conjecture applies for the

graph F , (because G is the smallest graph with outdegree k1 for which the C-H conjecture

does not hold). Therefore, F has a cycle of length at most t′, where t′ =

⌈
|F |
k1 − r

⌉
. Note

that by Proposition 1.2.6, we have

⌈
|F |
k1 − r

⌉
≤ |F | − 1

k1 − r
+ 1.

But F is a subgraph of G, so this cycle is contained in G. Thus, t′ > t, so t ≤ t′ − 1 =
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|F |
k1 − r

⌉
− 1 ≤ |F | − 1

k1 − r
+ 1− 1 =

|F | − 1

k1 − r
<
|F |
k1 − r

, so t <
|F |
k1 − r

.

Now, |F | = |T x
i−1| = |T x

i | − |Sx
i | = |T x

i | − r < ik1 − r ≤
⌈
1
2
t
⌉
k1 − r. Thus, t <

|F |
k1 − r

<⌈
1
2
t
⌉
k1 − r

k1 − r
, and hence

t <

⌈
1
2
t
⌉
k1 − r

k1 − r
. (4.3)

So (4.3) implies that r > 1
2
k1. To prove this, note that by Proposition 1.2.3, we have t ≥

2
⌈
1
2
t
⌉
−1. Hence,

⌈
1
2
t
⌉
k1 − r

k1 − r
> t ≥ 2

⌈
1
2
t
⌉
−1, so

⌈
1
2
t
⌉
k1−r > 2

⌈
1
2
t
⌉
k1−k1+r−2

⌈
1
2
t
⌉
r,

which implies that 2
⌈
1
2
t
⌉
r − 2r + k1 >

⌈
1
2
t
⌉
k1, so 2r

(⌈
1
2
t
⌉
− 1
)
> k1

(⌈
1
2
t
⌉
− 1
)
.

Note that
⌈
1
2
t
⌉
− 1 > 0, because t > 2, but |T x

i | < ik1 by (4.1), and i ≤
⌈
1
2
t
⌉
, so if t = 2,

then i = 0 or 1, a contradiction. Hence, t ≥ 3.

Therefore, 2r > k1, so r > 1
2
k1, and so 1

2
k1 < |Sx

i | < k1, and (4.2) is proved. Now, we

shall show that

|Sx
i−1| < 2k1 − |Sx

i | ≤
⌊
3
2
k1
⌋

(4.4)

To prove this, note that by the minimality of i, we have |Sx
i−1| + |Sx

i | < 2k1, otherwise

if |Sx
i−1| + |Sx

i | ≥ 2k1, and since |Sx
1 | + |Sx

2 | + . . . + |Sx
i−1| + |Sx

i | < ik1, we get that

|Sx
1 |+|Sx

2 |+. . .+|Sx
i−2| < ik1−|Sx

i−1|−|Sx
i | ≤ ik1−2k1 = (i−2)k1, and so |T x

i−2| < (i−2)k1,

which contradicts the minimality of i. Therefore,

(1) |Sx
i−1| < 2k1 − |Sx

i |. Now, by (4.2), we have 1
2
k1 < |Sx

i |, so 2k1 − |Sx
i | < 3

2
k1. Thus

(2) 2k1 − |Sx
i | ≤

⌊
3
2
k1
⌋
.

So by (1) and (2) we obtain

|Sx
i−1| < 2k1 − |Sx

i | ≤
⌊
3
2
k1
⌋

This proves (4.4).

Finally, we claim that G contains a cycle of length at most⌈
|T x

i−1|
k1

⌉
+ |Sx

i−1| ≤
⌈
1
2
t
⌉

+
⌊
3
2
k1
⌋

(4.5)

To prove (4.5), we may assume that Sx
i−1 is acyclic, for otherwise it contains a cycle of

length at most |Sx
i−1| and so G contains a cycle of length at most

|Sx
i−1| <

⌈
|T x

i−1|
k1

⌉
+ |Sx

i−1|
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and we are done.

If Sx
i−1 is acyclic then it follows that from every vertex y in Sx

i−1, there exists a path in

Sx
i−1 to a vertex y′ ∈ Sx

i−1, where the outdegree of y′ is zero in Sx
i−1, otherwise y′ will be

connected to a vertex u ∈ Sx
i−1 and we will obtain a cycle in Sx

i−1, a contradiction.

Now, by (4.2), |Sx
i | < k1, so there must be a vertex y′′ ∈ T x

i−2 such that y′y′′ is an edge of

G, because the outdegree of y′ is k1 in G.

Consider the graph H obtained from the vertices of T x
i−1 in the following manner:

(i) Keeping all edges uv (of G) with u, v ∈ T x
i−1.

(ii) For each vertex y in Sx
i−1, we find y′′, and add (new) edge yz whenever y′′z is an

edge of G.

The minimal outdegree of H is k1, because for each vertex y′′ ∈ Sx
i−2 such that y′y′′ is

an edge we can find a vertex z in T x
i−1 such that y′′z is an edge, so we add the edge yz.

(Because the outdegree of y′′ is k1 in T x
i−1). Therefore, vertices such as y have outdegree

at least k1 and vertices in T x
i−2 (i 6= 2) have outdegree k1 in H.

Note that x /∈ H, so |H| < |G|. Thus, by the minimality of G, H contains a cycle C of

length at most

⌈
|H|
k1

⌉
=

⌈
|T x

i−1|
k1

⌉
.

Now, we know by (4.1) that |T x
i | < ik1 ≤

⌈
1
2
t
⌉
k1, so |T x

i | ≤
⌈
1
2
t
⌉
k1 − 1 and by (4.2),

1
2
k1 < |Sx

i | < k1, which implies that |Sx
i | > 0, so |T x

i−1| < |T x
i |, which implies that

|T x
i−1| ≤ |T x

i | − 1, so |T x
i−1| ≤

⌈
1
2
t
⌉
k1 − 2, and so

|T x
i−1|
k1

≤
⌈
1
2
t
⌉
− 2

k1
. Thus,

⌈
|T x

i−1|
k1

⌉
≤
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1
2
t
⌉
− 2

k1

⌉
≤
⌈
1
2
t
⌉
. Now, each (new) edge yz of C with y ∈ Sx

i−1 can be replaced by a

path, consisting of only (old) edges of G, from y to z going through y′ and y′′.

Thus from C, we create a subgraph C ′ of T x
i−1 which contains a cycle in G (such a cycle

exists because we replace each (new) edge by a path of (old) edges, so either C ′ is a cycle

or it may contain a cycle). Now, C ′ has at most

⌈
|T x

i−1|
k1

⌉
vertices in T x

i−2, because if there

are m vertices y in C
⋂
Sx
i−1, then we add at most m vertices y′′ to C ′, since there can be

more than one y connected to the same y′′. Now, since we have at most

⌈
|T x

i−1|
k1

⌉
vertices

y in C
⋂
Sx
i−1, then we add at most

⌈
|T x

i−1|
k1

⌉
vertices y′′ in T x

i−2, so
∣∣C ′⋂T x

i−2
∣∣ ≤ ⌈ |T x

i−1|
k1

⌉
.

Clearly, C ′ contains a cycle of length at most

⌈
|T x

i−1|
k1

⌉
+ |Sx

i−1|. This establishes (4.5).

Now, (4.5) implies that G contains a cycle in T x
i−1 of length at most

⌈
|T x

i−1|
k1

⌉
+ |Sx

i−1| ≤⌈
1
2
t
⌉

+ |Sx
i−1| ≤

⌈
1
2
t
⌉

+
⌊
3
2
k1
⌋
.

Since every cycle of G has length greater than t =

⌈
n

k1

⌉
, we obtain

⌈
n

k1

⌉
<
⌈
1
2
t
⌉
+|Sx

i−1| ≤⌈
1
2
t
⌉

+
⌊
3
2
k1
⌋

(1) If

⌈
n

k1

⌉
is an even integer, then

⌈
n

k1

⌉
<

⌈
1
2

⌈
n

k1

⌉⌉
+
⌊
3
2
k1
⌋

= 1
2

⌈
n

k1

⌉
+
⌊
3
2
k1
⌋
. Thus,

1
2

⌈
n

k1

⌉
<
⌊
3
2
k1
⌋
, but 1

2

n

k1
≤ 1

2

⌈
n

k1

⌉
and

⌊
3
2
k1
⌋
≤ 3

2
k1, so 1

2

n

k1
< 3

2
k1, which implies

that n < 3k21.

(2) If

⌈
n

k1

⌉
is an odd integer, then

⌈
n

k1

⌉
= 2m + 1, where m ∈ Z+

⋃
{0}. Therefore,⌈

n

k1

⌉
<

⌈
1
2

⌈
n

k1

⌉⌉
+
⌊
3
2
k1
⌋

= m + 1 +
⌊
3
2
k1
⌋
, so 2m + 1 < m + 1 +

⌊
3
2
k1
⌋
, then

m <
⌊
3
2
k1
⌋
, which implies that m+ 1

2
<
⌊
3
2
k1
⌋
. Thus, 1

2

⌈
n

k1

⌉
<
⌊
3
2
k1
⌋
, and as above

n < 3k21.

4.3 The C-H Conjecture For k ≤ 5

We shall use the previous theorem to prove the C-H conjecture for k ≤ 5.

Theorem 4.3.1. [5] The C-H conjecture holds for k1 ≤ 5.
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Proof. (1) Case 1. k1 = 1.

The theorem holds trivially for k1 = 1.

(2) Case 2. k1 = 2.

If k1 = 2, then (4.2) implies that 1 < |Sx
i | < 2, a contradiction. Therefore, the

conjecture must hold for k1 = 2.

(3) Case 3. k1 = 3.

Suppose k1 = 3, and assume that the conjecture fails for k1 = 3. Let G be the smallest

graph for which the conjecture fails. Define n and t as usual. Choose a vertex x and

a smallest integer i such that x and i satisfy (4.1). With k1 = 3, (4.2) implies that
3
2
< |Sx

i | < 3, so |Sx
i | = 2. Now, we have |T x

i−1| = |T x
i |− |Sx

i |. Since i is chosen so that

|T x
i | < 3i, we have |T x

i−1| < 3i−2, so |T x
i−1| ≤ 3(i−1) ≤ 3

(⌈
1
2
t
⌉
− 1
)
. But (4.5) implies

that G contains a cycle of length at most t′ ≤
⌈
1
3
. 3
(⌈

1
2
t
⌉
− 1
)⌉

+ |Sx
i−1|. Moreover,

by (4.4), |Sx
i−1| < 2k1 − |Sx

i |, so |Sx
i−1| < 6 − 2 = 4, then |Sx

i−1| ≤ 3. Therefore,

t′ ≤
⌈
1
2
t
⌉
− 1 + 3 =

⌈
1
2
t
⌉

+ 2. By our assumption, we have t′ > t. Therefore,

t <
⌈
1
2
t
⌉

+ 2. Now

(1) If t is an even integer, then 1
2
t+ 2 > t, so t < 4, which implies that t = 2.

(2) If t is an odd integer, then t = 2m+ 1, where m ∈ Z+
⋃
{0}, then

⌈
1
2
(2m+ 1)

⌉
+

2 =
⌈
m+ 1

2

⌉
+2 = m+3 > 2m+1, so m < 2, which implies that m = 0, 1. Thus,

t = 1, 3.

It remains to show that the conjecture holds for t = 1, 2, and 3. (Because the conjec-

ture holds for t ≥ 4). In all cases we have to show that G contains a cycle of length

at most t.

(1) If t = 1 or 2, then
⌈
1
2
t
⌉

= 1, so i = 1, and |T x
1 | < k1 = 3, a contradiction. Thus,

the conjecture holds for t = 1 and 2.

(2) If t = 3, then
⌈
1
2
t
⌉

=
⌈
3
2

⌉
= 2, so i = 1 or 2. But by the above two cases we obtain

i 6= 1, so i = 2. Thus, |T x
2 | < 2 . 3 = 6, so |T x

2 | ≤ 5, but |Sx
1 | = 3, (because the

outdegree is 3), and |Sx
i | = |Sx

2 | = 2. But the outdegree of each vertex in Sx
1 is 3,

and we have only two vertices in Sx
2 . The vertices in Sx

1 cannot be connected to

x, otherwise G has a cycle of length 2, and we are done. Therefore, the vertices

in Sx
1 must be connected to each other, so Sx

1 has a cycle of length at most 3.

Therefore, G has a cycle of length at most 3, so the conjecture holds for t = 3.
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Since t ≤ 3, then
⌈n

3

⌉
≤ 3, which implies that n ≤ 9, so we showed that the C-H

conjecture holds for graphs with at most 9 vertices and outdegree k1 = 3, which a

sharper upper bound than that given in Theorem 4.2.1.

(4) Case 4. k1 = 4.

Suppose k1 = 4, and assume that the conjecture fails for k1 = 4. Let G be the

smallest graph for which the conjecture fails. Let n be the number of the vertices of

G, and let t =
⌈n

4

⌉
. Choose a vertex x and a smallest integer i such that x and i

satisfy (4.1). With k1 = 4, (4.2) implies that 2 < |Sx
i | < 4, so |Sx

i | = 3. Now, we have

|T x
i−1| = |T x

i | − |Sx
i |. Since i is chosen so that |T x

i | < 4i, we have |T x
i−1| < 4i − 3, so

|T x
i−1| ≤ 4(i − 1) ≤ 4

(⌈
1
2
t
⌉
− 1
)
. But (4.5) implies that G contains a cycle of length

at most t′ ≤
⌈
1
4
. 4
(⌈

1
2
t
⌉
− 1
)⌉

+ |Sx
i−1|, but |Sx

i−1| < 2k1 − |Sx
i |, so |Sx

i−1| < 8− 3 = 5,

then |Sx
i−1| ≤ 4. Therefore, t′ ≤

⌈
1
2
t
⌉
− 1 + 3 =

⌈
1
2
t
⌉

+ 2. By our assumption, we have

t′ > t. Therefore, t <
⌈
1
2
t
⌉

+ 3. Now

(1) If t is an even integer, then 1
2
t+ 3 > t, so t < 6, which implies that t = 2, 4.

(2) If t is an odd integer, then t = 2m+ 1, where m ∈ Z+
⋃
{0}, then

⌈
1
2
(2m+ 1)

⌉
+

3 =
⌈
m+ 1

2

⌉
+ 3 = m + 4 > 2m + 1, so m < 3, which implies that m = 0, 1, 2.

Thus, t = 1, 3, 5.

It remains to show that the conjecture holds for t = 1, 2, 3, 4 and 5. (Because the

conjecture holds for t ≥ 6).

(1) If t = 1 or 2, then
⌈
1
2
t
⌉

= 1, so i = 1, and |T x
1 | < k1 = 4, a contradiction, because

|T x
1 | = |Sx

1 | = 4. Thus, the conjecture holds for t = 1 and 2.

(2) If t = 3, then
⌈
1
2
t
⌉

=
⌈
3
2

⌉
= 2, so i = 1 or 2. But i 6= 1, so i = 2, and we know

that |Sx
1 | = 4, and |Sx

2 | = 3.

Since |Sx
2 | = 3 and k1 = 4, then the outdegree of each vertex in Sx

1 is at least

one in Sx
1 . Therefore, by Proposition 1.2.2, Sx

1 contains a cycle. But since t = 3,

then Sx
1 contains a cycle of length four. Note that each vertex in Sx

1 is connected

to the three vertices in Sx
2 . Now, Sx

2 contains a vertex v of outdegree zero in Sx
2 ,

otherwise Sx
2 will contain a cycle of length at most three, and we are done. This

means that every vertex of Sx
1 is connected to every vertex of Sx

2 . The vertex v

cannot be connected to any vertex in Sx
1 , otherwise we obtain a cycle of length 2,

and we are done. Therefore, there must be a set W of at least four vertices of G
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such that v is connected to the four vertices in W , where W = G − (T x
2

⋃
{x}).

But since t = 3, then

⌈
n

k1

⌉
= 3, so 9 ≤ n ≤ 12, which implies that |G| = 12

and |W | = 4. Now, the vertices in W cannot be connected to the vertices in

Sx
1 , otherwise we obtain a cycle of length 3, and we are done. The vertices in W

may be connected to x, then the subgraph Sx
2

⋃
W contains 7 vertices and has

minimal outdegree 3, so by the minimality of G, F contains a cycle of length at

most
⌈
7
3

⌉
= 3, and we are done. Therefore, the conjecture holds for t = 3.

(3) If t = 4, then
⌈
1
2
t
⌉

= d2e = 2, so i = 1 or 2. But i 6= 1, so i = 2 and |Sx
2 | = 3. As

above, Sx
1 contains a cycle of length at most |Sx

1 | = 4, so the conjecture holds for

t = 4.

(4) If t = 5, then
⌈
1
2
t
⌉

=
⌈
5
2

⌉
= 3, so i = 1, 2, or 3. But i 6= 1, 2, otherwise Sx

1 contains

a cycle of length at most 4 and we are done. Let i = 3, and |Sx
1 | = 4, |Sx

3 | = 3.

Now, |T x
3 | < 3k1 = 12, which implies that |T x

3 | ≤ 11, so |Sx
1 | + |Sx

2 | + |Sx
3 | ≤ 11,

thus 4 + |Sx
2 | + 3 ≤ 11, so |Sx

2 | ≤ 4, but |Sx
2 | = 4, otherwise if |Sx

2 | ≤ 3, then

|Sx
1 |+ |Sx

2 | ≤ 4 + 3 = 7, so |T x
2 | ≤ 7 < 8 = 2k1, which contradicts the minimality

of i.

Now, the vertices in Sx
2 are connected to at most three vertices in Sx

3 , so the

vertices in Sx
2 have outdegree at least one in T x

2 . Now, Sx
2 contains a vertex

y of indegree zero in Sx
2 , otherwise Sx

2 will contain a cycle of length at most

four, and we are done. Therefore, the vertices in Sx
2 − {y} have outdegree at

least one in T x
2 − {y}, and the vertices in Sx

1 have outdegree at least three in

T x
2 − {y}. Repeating this process another two times we deduce the existence of

two vertices u and w in Sx
2 −{y} each of which has indegree zero in Sx

2 −{y} and

Sx
2 −{y, u}, respectively. The remaining vertex v in Sx

2 −{y, u, w} has outdegree

at least one in T x
2 − {y, u, w}, and the vertices of Sx

1 have outdegree at least one

in T x
2 − {y, u, w}. Now, the subgraph F = T x

2 − {y, u, w} contains 5 vertices and

has outdegree at least one, so by the minimality of G, F contains a cycle of length

at most 5, and we are done. This proves that the C-H conjecture holds for k1 = 4.

Since t ≤ 5, then
⌈n

4

⌉
≤ 5, which implies that n ≤ 20, so we showed that the C-H

conjecture holds for graphs with at most 20 vertices and outdegree k1 = 4, which is

a sharper upper bound than that given in Theorem 4.2.1.
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(5) Case 5. k1 = 5

Suppose k1 = 5, and assume that the conjecture fails for k1 = 5. Let G be the smallest

graph for which the conjecture fails. Define n and t as usual. Choose a vertex x and

a smallest integer i such that x and i satisfy (4.1). With k1 = 5, (4.2) implies that
5
2
< |Sx

i | < 5, so |Sx
i | = 3 or 4. First, we deal with the case |Sx

i | = 3.

(I) |Sx
i | = 3

If |Sx
i | = 3, then we have |T x

i−1| = |T x
i |−|Sx

i |. Since i is chosen so that |T x
i | < 5i,

we have |T x
i−1| < 5i−3, so |T x

i−1| ≤ 5i−4 = 5(i−1)+1 ≤ 5(
⌈
1
2
t
⌉
−1)+1. But (4.5)

implies that G contains a cycle of length at most t′ ≤
⌈
1
5
.
(
5
(⌈

1
2
t
⌉
− 1
)

+ 1
)⌉

+

|Sx
i−1|, but |Sx

i−1| < 2k1−|Sx
i |, so |Sx

i−1| < 10−3 = 7, then |Sx
i−1| ≤ 6. Therefore,

t′ ≤
⌈⌈

1
2
t
⌉
− 1 + 1

5

⌉
+ 6 =

⌈⌈
1
2
t
⌉
− 4

5

⌉
+ 6 =

⌈
1
2
t
⌉

+ 6. By our assumption, we

must have t′ > t. Therefore, t < t′ ≤
⌈
1
2
t
⌉

+ 6. Now

(1) If t is an even integer, then 1
2
t + 6 > t, so t < 12, which implies that

t = 2, 4, 6, 8, 10.

(2) If t is an odd integer, then t = 2m + 1, where m ∈ Z+
⋃
{0}, then⌈

1
2
(2m+ 1)

⌉
+ 6 =

⌈
m+ 1

2

⌉
+ 6 = m + 7 > 2m + 1, so m < 6, which

implies that m = 0, 1, 2, 3, 4, 5. Thus, t = 1, 3, 5, 7, 9, 11.

It remains to show that the conjecture holds for t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and

11. (Because the conjecture holds for t ≥ 12).

(1) If t = 1 or 2, then
⌈
1
2
t
⌉

= 1, so i = 1, and |T x
1 | < k1 = 5, a contradiction. Thus,

the conjecture holds for t = 1 and 2.

(2) If t = 3, then
⌈
1
2
t
⌉

=
⌈
3
2

⌉
= 2, so i = 1 or 2. But i 6= 1, so i = 2. We know that

|Sx
1 | = 5, and |Sx

2 | = 3, and each vertex in Sx
1 is connected to at most 3 vertices

in Sx
2 . But each vertex in Sx

1 has outdegree 5 in G, so each vertex in Sx
1 must be

connected to at least two vertices in Sx
1 ,. This means that we have 5 vertices in

Sx
1 each of which has outdegree at least two in Sx

1 , so by the minimality of G, we

have a cycle of length at most
⌈
5
2

⌉
= 3 in Sx

1 . Therefore, the conjecture holds for

t = 3.

(3) If t = 4, then
⌈
1
2
t
⌉

= 2, so i = 1 or 2. Again i 6= 1, so i = 2. Using the same

argument as in the previous case we can show that Sx
1 has a cycle at most

⌈
5
2

⌉
= 3,

so the conjecture holds for t = 4.
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(4) If t = 5, then
⌈
1
2
t
⌉

=
⌈
5
2

⌉
= 3, so i = 1, 2, or 3. But i 6= 1, 2, otherwise we

have a cycle of length at most 3 in Sx
1 , and we are done. Therefore, let i = 3.

So |Sx
1 | = 5, |Sx

3 | = 3, and |T x
3 | < 3k1 = 15, so |T x

3 | ≤ 14, which means that

|Sx
1 | + |Sx

2 | + |Sx
3 | ≤ 14, so 5 + |Sx

2 | + 3 ≤ 14, hence |Sx
2 | ≤ 6, so |Sx

2 | = 5 or 6,

otherwise if |Sx
2 | ≤ 4, then |Sx

1 |+ |Sx
2 | ≤ 5 + 4 = 9, so |T x

2 | ≤ 9 < 2k1 = 10, which

contradicts the minimality of i.

(a) If |Sx
2 | = 5, then each vertex in Sx

2 has outdegree at least 2 in T x
2 , so by the

minimality of G, T x
2 contains a cycle of length at most

⌈
10
2

⌉
= 5, and we are

done.

(b) If |Sx
2 | = 6, then we have two cases:

(1) If every vertex in Sx
2 has nonzero indegree in Sx

2 , then by Proposition

1.2.2, Sx
2 contains a cycle of length at most 6, but Sx

2 cannot contain a

cycle of length less than 6. Therefore, Sx
2 contains a cycle of length 6 and

each vertex has indegree 1.

Let Sx
2 = {v1, v2, v3, v4, v5, v6} and Sx

1 = {v7, v8, v9, v10, v11}. We know

that there exists a vertex in Sx
1 with all five outneighbours in Sx

2 , otherwise

Sx
1 will contain a cycle of length at most 5. Without loss of generality,

let v11 ∈ Sx
1 be connected to {v1, v2, v3, v4, v5} in Sx

2 . Since |Sx
3 | = 3,

then the vertex v1 ∈ Sx
2 must have outdegree at least two in T x

2 . But it

cannot be connected to a vertex in the cycle other than v2 (because then,

it will create a cycle of length less than 6), so without loss of generality,

let (v1, v7) ∈ E. Since v7 must have outdegree five in T x
2 , then it must
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be connected to {v2, v3, v8, v9, v10}. Similarly, the vertex v10 must be

connected to {v2, v3, v4, v8, v9}. But the vertex v9 can be connected only

to {v2, v3, v4, v8}, which contradicts the fact that every vertex in Sx
1 has

outdegree 5 in T x
2 .

(2) If there exists a vertex y ∈ Sx
2 with zero indegree in Sx

2 . Let us look at

F = T x
2 − {y}, that has 10 vertices. The outdegree of every vertex in

Sx
2 − {y} in F is not affected because the vertex y that we deleted had

indegree zero in Sx
2 . Hence, the minimum outdegree of every vertex in

Sx
2 − {y} in F is at least two. Every vertex in Sx

1 has outdegree five in

T x
2 , hence their outdegree is at least four in the new graph F . Therefore,

F has 10 vertices and minimal outdegree 2, so by the minimality of G, F

contains a cycle of length at most
⌈
10
2

⌉
= 5, and we are done. Therefore,

the conjecture holds for t = 5.

(5) If t = 6, then
⌈
1
2
t
⌉

= 3, so i = 1, 2, or 3. As in the case t = 5, we see that i = 3,

and so G contains a cycle of length at most 5, so the conjecture holds for t = 6.

(6) If t = 7, then
⌈
1
2
t
⌉

=
⌈
7
2

⌉
= 4, so i = 1, 2, 3, or 4. But i 6= 1, 2, 3, otherwise

G will contain a cycle of length at most 5, and we are done. Therefore, i = 4,

so |Sx
1 | = 5, |Sx

4 | = 3, and we know that |T x
4 | < 4k1 = 20, so |T x

4 | ≤ 19, which

implies that |Sx
1 | + |Sx

2 | + |Sx
3 | + |Sx

4 | ≤ 19, so 5 + |Sx
2 | + |Sx

3 | + 3 ≤ 19, and so

|Sx
2 | + |Sx

3 | ≤ 11, so |Sx
2 | + |Sx

3 | = 10 or 11, otherwise if |Sx
2 | + |Sx

3 | ≤ 9, then

|T x
3 | = |Sx

1 |+ |Sx
2 |+ |Sx

3 | ≤ 5+9 = 14, so |T x
3 | ≤ 14 < 15 = 3k1, which contradicts

the minimality of i.

(a) If |Sx
2 | + |Sx

3 | = 10, then |Sx
2 | ≥ 5, otherwise if |Sx

2 | ≤ 4, then |T x
2 | = |Sx

1 | +
|Sx

2 | ≤ 9 < 2k1, which contradicts the minimality of i, so the cases are:

(1) |Sx
2 | = 9, |Sx

3 | = 1, then the subgraph T x
2 has 14 vertices and outdegree

at least 4, so by the minimality of G, T x
2 contains a cycle of length at

most
⌈
14
4

⌉
= 4, and we are done.

(2) |Sx
2 | = 8, |Sx

3 | = 2, then T x
2 has 13 vertices and outdegree at least 3, so it

contains a cycle of length at most
⌈
13
3

⌉
= 5, and we are done.

(3) |Sx
2 | = 7, |Sx

3 | = 3, then T x
2 has 12 vertices and outdegree at least 2, so it

contains a cycle of length at most
⌈
12
2

⌉
= 6, and we are done.

(4) |Sx
2 | = 6, |Sx

3 | = 4, then Sx
3 contains a vertex y of indegree zero in Sx

3 ,
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otherwise if each vertex in Sx
3 has indegree 1 in Sx

3 , then Sx
3 will contain

a cycle of length at most 4, and we are done. Consider the subgraph

F = T x
3 − {y}, this subgraph has 14 vertices and outdegree at least 2,

because the vertices in Sx
1 are not affected and the vertices in Sx

2 have

outdegree at least 4 in T x
3 − {y}, so by the minimality of G, F contains

a cycle of length at most
⌈
14
2

⌉
= 7, and we are done.

(5) |Sx
2 | = 5, |Sx

3 | = 5, then Sx
3 contains a vertex y of indegree zero in Sx

3 ,

otherwise if each vertex in Sx
3 has indegree 1 in Sx

3 , then Sx
3 will contain

a cycle of length at most 5, and we are done. Consider the subgraph

F = T x
3 − {y}, this subgraph has 14 vertices and outdegree at least 2,

because the vertices in Sx
1 are not affected and the vertices in Sx

2 have

outdegree at least 4 in T x
3 − {y}, so by the minimality of G, F contains

a cycle of length at most
⌈
14
2

⌉
= 7, and we are done.

(b) If |Sx
2 |+ |Sx

3 | = 11, then the cases are:

(1) |Sx
2 | = 10, |Sx

3 | = 1, then the subgraph T x
2 has 15 vertices and outdegree

at least 4, so by the minimality of G, T x
2 contains a cycle of length at

most
⌈
15
4

⌉
= 4, and we are done.

(2) |Sx
2 | = 9, |Sx

3 | = 2, then T x
2 has 14 vertices and outdegree at least 3, so it

contains a cycle of length at most
⌈
14
3

⌉
= 5, and we are done.

(3) |Sx
2 | = 8, |Sx

3 | = 3, then T x
2 has 13 vertices and outdegree at least 2, so it

contains a cycle of length at most
⌈
13
2

⌉
= 7, and we are done.

(4) |Sx
2 | = 7, |Sx

3 | = 4, then every vertex of Sx
3 has outdegree at least 2 in T x

3 .

Sx
3 contains a vertex y of indegree zero in Sx

3 , otherwise if each vertex

in Sx
3 has indegree 1, then Sx

3 will contain a cycle of length at most 4,

and we are done. Consider the subgraph T x
3 −{y}, in this subgraph each

vertex in Sx
1 has outdegree 5, and each vertex in Sx

2 has outdegree at

least 4 in T x
3 − {y}. Now, Sx

3 − {y} contains 3 vertices and among these

vertices there exists a vertex z of indegree zero in Sx
3 − {y}, so consider

the subgraph F = T x
3 − {y, z}. In this subgraph each vertex in Sx

1 has

outdegree 5 in F , and each vertex in Sx
2 has outdegree at least 3 in F ,

and so F contains 14 vertices and has outdegree at least 2, so F contains

a cycle of length at most
⌈
14
2

⌉
= 7, and we are done.

(5) |Sx
2 | = 6, |Sx

3 | = 5, then proceeding as in the previous case, let F be the
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subgraph induced by T x
3 − {y, z}, where y and z are two vertices in Sx

3

as before, so F contains a cycle of length at most
⌈
14
2

⌉
= 7, and we are

done.

(6) |Sx
2 | = 5, |Sx

3 | = 6, then proceeding as in the previous case, let F be the

subgraph induced by T x
3 − {y, z}, where y and z are two vertices in Sx

3

as before, so F contains a cycle of length at most
⌈
14
2

⌉
= 7, and we are

done. Therefore, the conjecture holds for t = 7.

(7) If t = 8, then
⌈
1
2
t
⌉

= 4, so i = 1, 2, 3, or 4. As in the previous case, we see that

i = 4, and so G contains a cycle of length at most 7, so the conjecture holds for

t = 8.

(8) If t = 9, then
⌈
1
2
t
⌉

=
⌈
9
2

⌉
= 5, so i = 1, 2, 3, 4, or 5. But i 6= 1, 2, 3, 4, otherwise

G will contain a cycle of length at most 7, and we are done. Therefore, i = 5, so

|Sx
1 | = 5, and |Sx

5 | = 3, and we know that |T x
5 | < 5k1 = 25, so |T x

5 | ≤ 24, which

implies that |Sx
1 |+ |Sx

2 |+ |Sx
3 |+ |Sx

4 |+ |Sx
5 | ≤ 24, so 5+ |Sx

2 |+ |Sx
3 |+ |Sx

4 |+3 ≤ 24,

hence |Sx
2 | + |Sx

3 | + |Sx
4 | ≤ 16, so |Sx

2 | + |Sx
3 | + |Sx

4 | = 15 or 16, otherwise if

|Sx
2 | + |Sx

3 | + |Sx
4 | ≤ 14, then |T x

4 | ≤ 19 < 20 = 4k1, which contradicts the

minimality of i.

(a) |Sx
2 | + |Sx

3 | + |Sx
4 | = 15, then |Sx

2 | + |Sx
3 | ≥ 10, otherwise if |Sx

2 | + |Sx
3 | ≤ 9,

then |T x
3 | ≤ 14 < 3k1, which contradicts the minimality of i, so the cases are:

(1) |Sx
4 | = 1, |Sx

2 |+ |Sx
3 | = 14, then each vertex in Sx

3 will be connected to at

most one vertex in Sx
4 , so T x

3 contains 19 vertices and has outdegree at

least 4, so by the minimality of G, T x
3 contains a cycle of length at most⌈

19
4

⌉
= 5, and we are done.

(2) |Sx
4 | = 2, |Sx

2 | + |Sx
3 | = 13, then T x

3 contains 18 vertices and outdegree

at least 3, so T x
3 contains a cycle of length at most

⌈
18
3

⌉
= 6, and we are

done.

(3) |Sx
4 | = 3, |Sx

2 | + |Sx
3 | = 12, then T x

3 contains 17 vertices and outdegree

at least 2, so T x
3 contains a cycle of length at most

⌈
17
2

⌉
= 9, and we are

done.

(4) |Sx
4 | = 4, |Sx

2 |+ |Sx
3 | = 11, then there exists a vertex y in Sx

4 with indegree

zero in Sx
4 , otherwise Sx

4 contains a cycle of length at most 4, and we

are done. Therefore, consider Sx
4 − {y}, it contains 3 vertices, and the
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outdegree of each vertex in Sx
1

⋃
Sx
2 is 5 in T x

4 − {y}, and the outdegree

of each vertex in Sx
3 is at least 4. Now, Sx

4 − {y} contains a vertex z of

indegree zero in Sx
4 − {y}, otherwise Sx

4 − {y} contains a cycle of length

at most 3, and we are done. Let F = T x
4 − {y, z}, then the vertices in

Sx
1

⋃
Sx
2 have outdegree 5, and the vertices in Sx

3 have outdegree at least

3, and the vertices in Sx
4 −{y, z} have outdegree at least 2, so F contains

18 vertices and has outdegree at least 2, so by the minimality of G, F

contains a cycle of length at most
⌈
18
2

⌉
= 9, and we are done.

(5) |Sx
4 | = 5, |Sx

2 | + |Sx
3 | = 10, then proceeding as in the previous case, let

F = T x
4 − {y, z}, then F contains 18 vertices and has outdegree at least

2, so F contains a cycle of length at most
⌈
18
2

⌉
= 9, and we are done.

(b) |Sx
2 | + |Sx

3 | + |Sx
4 | = 16, then it is easy to show that |Sx

2 | + |Sx
3 | ≥ 10, so the

cases are:

(1) |Sx
4 | = 1, |Sx

2 |+ |Sx
3 | = 15, then T x

3 contains 20 vertices and outdegree at

least 4, so by the minimality of G, T x
3 contains a cycle of length at most⌈

20
4

⌉
= 5, and we are done.

(2) |Sx
4 | = 2, |Sx

2 | + |Sx
3 | = 14, then T x

3 contains a cycle of length at most⌈
19
3

⌉
= 7, and we are done.

(3) |Sx
4 | = 3, |Sx

2 | + |Sx
3 | = 13, then T x

3 contains a cycle of length at most⌈
18
2

⌉
= 9, and we are done.

(4) |Sx
4 | = 4, |Sx

2 | + |Sx
3 | = 12, then as before Sx

4 contains a vertex y of

indegree zero in Sx
4 , and Sx

4 −{y} contains a vertex w of indegree zero in

Sx
4 − {y}. Moreover, Sx

4 − {y, w} contains a vertex z of indegree zero in

Sx
4 − {y, w}, so let F = T x

4 − {y, w, z}. Note that the vertices in Sx
1 and

Sx
2 have outdegree 5 in F , and the vertices in Sx

3 have outdegree at least

2 in F , and the vertices of Sx
4 − {y, w, z} have outdegree at least 2 in F .

Therefore, by the minimality of G, F contains a cycle of length at most⌈
18
2

⌉
= 9, and we are done.

(5) |Sx
4 | = 5, |Sx

2 | + |Sx
3 | = 11, then proceeding as above, let F = T x

4 −
{y, w, z}, then F has 18 vertices and outdegree at least 2, so F contains

a cycle of length at most
⌈
18
2

⌉
= 9, and we are done.

(6) |Sx
4 | = 6, |Sx

2 | + |Sx
3 | = 10, then proceeding as above, let F = T x

4 −
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{y, w, z}, then F has 18 vertices and outdegree at least 2, so F contains

a cycle of length at most
⌈
18
2

⌉
= 9, and we are done. Therefore, the

conjecture holds for t = 9.

(9) If t = 10, then
⌈
1
2
t
⌉

= 5, so i = 1, 2, 3, 4, or 5. As in the case t = 9, we see that

i = 5, and so G contains a cycle of length at most 9, so the conjecture holds for

t = 10.

(10) If t = 11, then
⌈
1
2
t
⌉

=
⌈
11
2

⌉
= 6, so i = 1, 2, 3, 4, 5, or 6. But if i ≤ 5, we get a cycle

of length at most 9. Let i = 6, |Sx
1 | = 5, and |Sx

6 | = 3. Now, we know that |T x
6 | <

6k1 = 30, so |T x
6 | ≤ 29, which implies that |Sx

1 |+|Sx
2 |+|Sx

3 |+|Sx
4 |+|Sx

5 |+|Sx
6 | ≤ 29,

so 5 + |Sx
2 |+ |Sx

3 |+ |Sx
4 |+ |Sx

5 |+ 3 ≤ 29, hence |Sx
2 |+ |Sx

3 |+ |Sx
4 |+ |Sx

5 | ≤ 21, so

|Sx
2 | + |Sx

3 | + |Sx
4 | + |Sx

5 | = 20 or 21, otherwise if |Sx
2 | + |Sx

3 | + |Sx
4 | + |Sx

5 | ≤ 19,

then |T x
5 | ≤ 24 < 25 = 5k1, which contradicts the minimality of i.

(a) |Sx
2 | + |Sx

3 | + |Sx
4 | + |Sx

5 | = 20, then |Sx
2 | + |Sx

3 | + |Sx
4 | ≥ 15, otherwise if

|Sx
2 | + |Sx

3 | + |Sx
4 | ≤ 14, then |T x

4 | ≤ 19 < 20 = 4k1, which contradicts the

minimality of i, so the cases are:

(1) |Sx
5 | = 1, |Sx

2 |+ |Sx
3 |+ |Sx

4 | = 19, then each vertex in Sx
4 will be connected

to at most one vertex in Sx
5 , so T x

4 contains 24 vertices and has outdegree

at least 4, so by the minimality of G, T x
4 contains a cycle of length at

most
⌈
24
4

⌉
= 6, and we are done.

(2) |Sx
5 | = 2, |Sx

2 | + |Sx
3 | + |Sx

4 | = 18, then T x
4 contains 23 vertices and has

outdegree at least 3, so T x
4 contains a cycle of length at most

⌈
23
3

⌉
= 8,

and we are done.

(3) |Sx
5 | = 3, |Sx

2 | + |Sx
3 | + |Sx

4 | = 17, then T x
4 contains 22 vertices and has

outdegree at least 2, so T x
4 contains a cycle of length at most

⌈
22
2

⌉
= 11,

and we are done.

(4) |Sx
5 | = 4, |Sx

2 |+ |Sx
3 |+ |Sx

4 | = 16, then Sx
5 contains a vertex y of indegree

zero in Sx
5 , otherwise Sx

5 will contain a cycle of length at most 4. There-

fore, consider the graph T x
5 −{y}. Each vertex in Sx

5 −{y} has outdegree

at least 2 in T x
5 −{y}. Each vertex in T x

3 has outdegree 5 in T x
5 −{y}, and

each vertex in Sx
4 has outdegree at least 4 in T x

5 −{y}. Now, in Sx
5 −{y},

there exists a vertex z with indegree zero in Sx
5 −{y}, because otherwise

we get a cycle of length at most 3. Hence, in T x
5 − {y, z}, again we see



4.3. THE C-H CONJECTURE FOR K ≤ 5 47

that each vertex in Sx
5 − {y, z} has outdegree at least 2, and each vertex

in T x
3 has outdegree 5 in T x

5 −{y, z}, also each vertex in Sx
4 has outdegree

at least 3 in T x
5 −{y, z}. Next, we note that Sx

5 −{y, z} contains a vertex

w of indegree zero in Sx
5 − {y, z}, otherwise Sx

5 − {y, z} will contain a

cycle of length at most 2. Consider F = T x
5 − {y, z, w}, then the vertex

in Sx
5 −{y, z, w} has outdegree at least 2 in F , and each vertex in T x

3 has

outdegree 5 in F , also each vertex in Sx
4 has outdegree at least 2 in F , so

F has 22 vertices and has outdegree at least 2, so by the minimality of

G, F contains a cycle of length at most
⌈
22
2

⌉
= 11, and we are done.

(5) |Sx
5 | = 5, |Sx

2 | + |Sx
3 | + |Sx

4 | = 15, then proceeding as in the previous

case, let F = T x
5 − {y, z, w}, then F contains a cycle of length at most⌈

22
2

⌉
= 11, and we are done.

(b) |Sx
2 | + |Sx

3 | + |Sx
4 | + |Sx

5 | = 21, then as above we can conclude that |Sx
2 | +

|Sx
3 |+ |Sx

4 | ≥ 15 so the cases are:

(1) |Sx
5 | = 1, |Sx

2 |+ |Sx
3 |+ |Sx

4 | = 20, then each vertex in Sx
4 will be connected

to at most one vertex in Sx
5 , so T x

4 contains 25 vertices and has outdegree

at least 4, so by the minimality of G, T x
4 contains a cycle of length at

most
⌈
25
4

⌉
= 7, and we are done.

(2) |Sx
5 | = 2, |Sx

2 | + |Sx
3 | + |Sx

4 | = 19, then T x
4 contains a cycle of length at

most
⌈
24
3

⌉
= 8, and we are done.

(3) |Sx
5 | = 3, |Sx

2 | + |Sx
3 | + |Sx

4 | = 18, then |Sx
2 | + |Sx

3 | ≥ 10, otherwise if

|Sx
2 | + |Sx

3 | ≤ 9, then |T x
3 | ≤ 14 < 15 = 3k1, which contradicts the

minimality of i, so the cases are:

(3.1) |Sx
4 | = 1, |Sx

2 | + |Sx
3 | = 17, then T x

3 contains a cycle of length at

most
⌈
22
4

⌉
= 6, and we are done.

(3.2) |Sx
4 | = 2, |Sx

2 | + |Sx
3 | = 16, then T x

3 contains a cycle of length at

most
⌈
21
3

⌉
= 7, and we are done.

(3.3) |Sx
4 | = 3, |Sx

2 | + |Sx
3 | = 15, then T x

3 contains a cycle of length at

most
⌈
20
2

⌉
= 10, and we are done.

(3.4) |Sx
4 | = 4, 5, 6, 7, or 8, |Sx

2 |+ |Sx
3 | = 14, 13, 12, 11, or 10, respectively,

then Sx
4 contains a vertex y of indegree zero in Sx

4 , otherwise Sx
4 will

contain a cycle of length at most 8. Therefore, let F = T x
4 − {y}, then

each vertex in Sx
4 −{y} has outdegree at least 2 in F , and each vertex in
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Sx
1

⋃
Sx
2 has outdegree 5, and each vertex in Sx

3 has outdegree at least 4,

so by the minimality of G, F contains a cycle of length at most
⌈
22
2

⌉
= 11,

and we are done.

(4) |Sx
5 | = 4, |Sx

2 |+ |Sx
3 |+ |Sx

4 | = 17, then |Sx
2 |+ |Sx

3 | ≥ 10, so the cases are:

(4.1) |Sx
4 | = 1, |Sx

2 | + |Sx
3 | = 16, then T x

3 contains a cycle of length at

most
⌈
21
4

⌉
= 6, and we are done.

(4.2) |Sx
4 | = 2, |Sx

2 | + |Sx
3 | = 15, then T x

3 contains a cycle of length at

most
⌈
20
3

⌉
= 7, and we are done.

(4.3) |Sx
4 | = 3, |Sx

2 | + |Sx
3 | = 14, then T x

3 contains a cycle of length at

most
⌈
19
2

⌉
= 10, and we are done.

(4.4) |Sx
4 | = 4, |Sx

2 | + |Sx
3 | = 13, then Sx

5 contains a vertex y of indegree

zero in Sx
5 . Moreover, Sx

5 − {y} contains a vertex z of indegree zero

in Sx
5 − {y}. Now, Sx

5 − {y, z} contains a vertex w of indegree zero

in Sx
5 − {y, z}. Next, Sx

5 − {y, z, w} contains one vertex of outdegree

at least 2 in T x
5 − {y, z, w}. Each vertex in Sx

4 has outdegree at least

2 in T x
5 − {y, z, w}, and each vertex in Sx

1

⋃
Sx
2

⋃
Sx
3 has outdegree 5 in

T x
5−{y, z, w}. Now, consider Sx

4

⋃
Sx
5−{y, z, w}, it has 5 vertices and each

vertex has outdegree at least 2 in T x
5 −{y, z, w}. Also, Sx

4

⋃
Sx
5 −{y, z, w}

contains a vertex u of indegree zero in Sx
4

⋃
Sx
5 − {y, z, w}, otherwise

Sx
4

⋃
Sx
5 −{y, z, w} will contain a cycle of length at most 5. The vertex u

may be either in Sx
4 or Sx

5−{y, z, w}. Then Sx
4

⋃
Sx
5−{y, z, w, u} contains

4 vertices each of which has outdegree at least 2 in T x
5 −{y, z, w, u}, and

each vertex in Sx
3 has outdegree at least 4 in T x

5 −{y, z, w, u}. The graph

F = T x
5 − {y, z, w, u} has 22 vertices and has outdegree at least 2, so by

the minimality of G, F contains a cycle of length at most
⌈
22
2

⌉
= 11, and

we are done.

(4.5) |Sx
4 | = 5, 6, or 7, and |Sx

2 | + |Sx
3 | = 12, 11, or 10, respectively, then

proceeding as in the previous case, let F = T x
5 − {y, z, w, u} where F is

constructed as above, then F has 22 vertices has outdegree at least 2, so

by the minimality of G, F contains a cycle of length at most
⌈
22
2

⌉
= 11,

and we are done.

(5) |Sx
5 | = 5, |Sx

2 |+ |Sx
3 |+ |Sx

4 | = 16, then |Sx
2 |+ |Sx

3 | ≥ 10, so the cases are:

(5.1) |Sx
4 | = 1, |Sx

2 | + |Sx
3 | = 15, then T x

3 contains a cycle of length at
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most
⌈
20
4

⌉
= 5, and we are done.

(5.2) |Sx
4 | = 2, |Sx

2 | + |Sx
3 | = 14, then T x

3 contains a cycle of length at

most
⌈
19
3

⌉
= 7, and we are done.

(5.3) |Sx
4 | = 3, |Sx

2 | + |Sx
3 | = 13, then T x

3 contains a cycle of length at

most
⌈
18
2

⌉
= 9, and we are done.

(5.4) |Sx
4 | = 4, 5, or 6, |Sx

2 | + |Sx
3 | = 12, 11, or 10, respectively, then as

in case (4.4), let F = T x
5 − {y, z, w, u}, where F is constructed as there,

then F has 22 vertices and has outdegree at least 2, so by the minimality

of G, F contains a cycle of length at most
⌈
22
2

⌉
= 11, and we are done.

(6) |Sx
5 | = 6, |Sx

2 |+ |Sx
3 |+ |Sx

4 | = 15, then |Sx
2 |+ |Sx

3 | ≥ 10, so the cases are:

(6.1) |Sx
4 | = 1, |Sx

2 | + |Sx
3 | = 14, then T x

3 contains a cycle of length at

most
⌈
19
4

⌉
= 5, and we are done.

(6.2) |Sx
4 | = 2, |Sx

2 | + |Sx
3 | = 13, then T x

3 contains a cycle of length at

most
⌈
18
3

⌉
= 6, and we are done.

(6.3) |Sx
4 | = 3, |Sx

2 | + |Sx
3 | = 12, then T x

3 contains a cycle of length at

most
⌈
17
2

⌉
= 9, and we are done.

(6.4) |Sx
4 | = 4 or 5, |Sx

2 | + |Sx
3 | = 12 or 11, respectively, then as in case

(4.4), let F = T x
5 − {y, z, w, u}, where F is constructed as there, then F

has 22 vertices and has outdegree at least 2, so by the minimality of G, F

contains a cycle of length at most
⌈
22
2

⌉
= 11, and we are done. Therefore,

the conjecture holds for t = 11.

Now, we consider the case |Sx
i | = 4.

(II) |Sx
i | = 4

If |Sx
i | = 4, then we have |T x

i−1| = |T x
i | − |Sx

i |. Since i is chosen so that

|T x
i | < 5i, we have |T x

i−1| < 5i − 4, so |T x
i−1| ≤ 5i − 5 = 5(i − 1) ≤

5(
⌈
1
2
t
⌉
− 1). But (4.5) implies that G contains a cycle of length at most

t′ ≤
⌈
1
5
(5(
⌈
1
2
t
⌉
− 1))

⌉
+|Sx

i−1|, and by (4.4) |Sx
i−1| < 2k1−|Sx

i |, which implies

that |Sx
i−1| < 10− 4 = 6, so |Sx

i−1| ≤ 5, thus t′ ≤
⌈
1
2
t
⌉
− 1 + 5 =

⌈
1
2
t
⌉

+ 4.

By our assumption, we have t′ > t, so we have t < t′ ≤
⌈
1
2
t
⌉

+ 4, so

t <
⌈
1
2
t
⌉

+ 4. Now

(1) If t is an even integer, then 1
2
t + 4 > t, so t < 8, which implies that

t = 2, 4, 6.
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(2) If t is an odd integer, then t = 2m + 1, where m ∈ Z+
⋃
{0}, then⌈

1
2
(2m+ 1)

⌉
+ 4 =

⌈
m+ 1

2

⌉
+ 4 = m + 5 > 2m + 1, so m < 4, which

implies that m = 0, 1, 2, 3. Thus, t = 1, 3, 5, 7.

It remains to show that the conjecture holds for t = 1, 2, 3, 4, 5, 6, 7. (Be-

cause the conjecture holds for t ≥ 8).

(1) If t = 1 or 2, then
⌈
1
2
t
⌉

= 1, so i = 1, and |T x
1 | < k1 = 5, a contradiction. Thus,

the conjecture holds for t = 1 and 2.

(2) If t = 3, then
⌈
1
2
t
⌉

=
⌈
3
2

⌉
= 2, so i = 1 or 2. But i 6= 1, so i = 2. Therefore,

|Sx
1 | = 5, and |Sx

2 | = 4. Since the outdegree of each vertex of Sx
1 is at least one in

Sx
1 , then by Proposition 1.2.2, Sx

1 contains a cycle, so we have the following cases:

(a) If Sx
1 contains a cycle of length 5, then every vertex in Sx

1 has outdegree one

in Sx
1 , and each vertex in Sx

1 is connected to all the vertices in Sx
2 . Hence, for

Sx
2 we have the following two cases:

(i) If Sx
2 is acyclic, then Sx

2 contains a vertex v of outdegree zero in Sx
2 , v

cannot be connected to the vertices in Sx
1 or x, otherwise we obtain a

cycle of length at most 3. Therefore, v must be connected to five vertices

from a set W of at least five vertices of G− {x}
⋃
T x
2 . But since t = 3,

then

⌈
n

k1

⌉
= 3, which implies that 11 ≤ n ≤ 15. On the other hand,

G ⊇ {x}
⋃
T x
2

⋃
W , and W

⋂
(T x

2

⋃
{x}) = ∅, so n ≥ 1 + 9 + 5 = 15,

which implies that n = 15, and |W | = 5. The vertices in W cannot

be connected to vertices from Sx
1 , otherwise we obtain a cycle of length

3. The vertices in W may be connected to x. But if we consider the

subgraph F = Sx
2

⋃
W , then F contains 9 vertices and has minimal

outdegree 4, so by the minimality of G, F contains a cycle of length at

most
⌈
9
4

⌉
= 3, and we are done.

(ii) If Sx
2 contains a cycle of length 4, then all the vertices of Sx

2 have out-

degree one in Sx
2 . As above the vertices in Sx

2 cannot be connected to

vertices from Sx
1 or x. Moreover, each vertex in Sx

2 must be connected

to four vertices from a set W of at most five vertices of G − {x}
⋃
T x
2 ,

where W = G− (T x
2

⋃
{x}), so |W | = 4 or 5. Assume that |W | = 5 (if

|W | = 4 the argument is similar). Now, let v be a vertex in Sx
2 such
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that v is connected to four vertices from W . This implies that there

exists a vertex y ∈ W such that v is not connected to y. The vertices of

W−{y} can be connected to y and x. Moreover, the vertices of Sx
2−{v}

can be connected to y. Note that the vertices in W − {y} cannot be

connected to vertices from Sx
1 , otherwise we obtain a cycle of length

3. Therefore, if we consider the subgraph F = Sx
2

⋃
W − {y}, then F

contains 8 vertices and has minimal outdegree 3, so by the minimality

of G, F contains a cycle of length at most
⌈
8
3

⌉
= 3, and we are done.

This completes the case in which Sx
1 contains a cycle of length 5. It remains

to consider the case in which Sx
1 contains a cycle of length 4. Note that

|Sx
2 | = 4, so each vertex in Sx

1 is connected to all the vertices in Sx
2 . Now, we

have three configurations for Sx
1 . The first configuration is when Sx

1 contains

one vertex which has indegree zero in Sx
1 and has outdegree 1 in Sx

1 , while

the remaining four vertices have outdegree one in Sx
1 .

When we add one more edge to it, we get the following cases:

Adding one more edge, we get the following cases:
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We can add only one more edge, so that we do not create a cycle of length

three, and hence we get the following case:

In order to discuss all these possible cases, we classify them into three con-

figurations:

(b) The first configuration is when Sx
1 contains one vertex which has indegree

zero in Sx
1 and has outdegree 1 in Sx

1 , while the remaining four vertices have

outdegree one in Sx
1 . This configuration is easy and can be dealt exactly as

the previous case, because each vertex of Sx
1 has outdegree one in Sx

1 , and

each vertex of Sx
1 is connected to all the vertices in Sx

2 .

(c) The second configuration is when |Sx
1 | contains exactly one vertex which has

outdegree at least two in Sx
1 while the remaining four vertices have outdegree

one in Sx
1 . Here we have the following two cases:

(i) If Sx
2 is acyclic, then let v ∈ Sx

2 be such that v has outdegree zero in

Sx
2 . Note that Sx

1 contains a vertex u such that u has outdegree 2, 3, or

4 in Sx
1 , while the remaining four vertices in Sx

1 are connected to all the
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vertices in Sx
2 . Now, u is connected to at least one vertex in Sx

2 . If v is

connected to u, then since u is connected to at least one vertex u′ ∈ Sx
1

and since u′ is connected to v, we obtain a cycle of length 3 which is

{v, u, u′, v}, and we are done. This means that v cannot be connected

to u. Moreover, the vertices of Sx
2 −{v} cannot be connected to vertices

from Sx
1 or x. Hence, the outdegree of any vertex of Sx

2 is 5 in Sx
2

⋃
W .

Now, v must be connected to the five vertices in W . The vertices in W

cannot be connected to vertices from Sx
1 − {u}, otherwise we obtain a

cycle of length 3. But the vertices of W may be connected to u. Note

that u may be connected to v, and the vertices of W may be connected

to u and x. Therefore, the subgraph F = Sx
2

⋃
W contains 9 vertices

and has minimal outdegree 3, so by the minimality of G, F contains a

cycle of length at most
⌈
9
3

⌉
= 3, and we are done.

(ii) If Sx
2 contains a cycle of length 4, then the vertices in Sx

2 have outde-

gree one in Sx
2 . As in the previous case, the vertices in Sx

2 cannot be

connected to vertices from Sx
1 or x. Moreover, each vertex in Sx

2 must

be connected to four vertices from a set W of at most five vertices of

G − {x}
⋃
T x
2 , so |W | = 4 or 5. Assume that |W | = 5 (if |W | = 4 the

argument is similar). Let u be a vertex in Sx
1 such that u has outde-

gree 2, 3, or 4 in Sx
1 , then u is connected to at least one vertex v ∈ Sx

2 .

Therefore, v is connected to four vertices in W . Let y ∈ W be such that

v is not connected to y. Note that the vertices in W − {y} cannot be

connected to vertices from Sx
1 , otherwise we obtain a cycle of length 3.

The vertices of W − {y} can be connected to x and y, the vertices of

Sx
2 −{v} can be connected to y. Therefore, if we consider the subgraph

F = Sx
2

⋃
W − {y}, then F contains 8 vertices and has minimal outde-

gree 3, so by the minimality of G, F contains a cycle of length at most⌈
8
3

⌉
= 3, and we are done.

(d) The third configuration is when Sx
1 contains two vertices which have outdegree

2 in Sx
1 , while the remaining three vertices have outdegree one in Sx

1 . Here

we have the following two cases:

(i) If Sx
2 is acyclic, let u, u′ ∈ Sx

1 , such that u and u′ have outdegree 2 in

Sx
1 . Then, u and u′ are connected to three vertices in Sx

2 . Every vertex
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in Sx
1 −{u, u′} is connected to all vertices in Sx

2 . Since Sx
2 is acyclic then

let v ∈ Sx
2 be such that v has outdegree zero in Sx

2 . If v is connected

to u, then since u is connected to a vertex u′′ ∈ Sx
1 − {u′} and since u′′

is connected to v, we obtain a cycle of length 3 which is {v, u, u′′, v},
and we are done. Similarly, v cannot be connected to u′. The vertex v

must be connected to the five vertices in W . Moreover, the vertices in

Sx
2 − {v} cannot be connected to vertices from Sx

1 or x, otherwise we

obtain a cycle of length at most 3. Now, it is easy to see that u and

u′ are consecutive in the cycle of length five in Sx
1 , and both have one

outneighbour v′ ∈ Sx
1 in common, as can be seen in the previous list

of graphs. The vertices of W cannot be connected to the vertices in

Sx
1 − {u, u′, v′}, otherwise we obtain a cycle of length 3. The vertices

of W can be connected to x. The subgraph F = Sx
2

⋃
W
⋃
{u, u′, v′}

contains 12 vertices and has minimal outdegree 4, so by the minimality

of G, F contains a cycle of length at most
⌈
12
4

⌉
= 3, and we are done.

(ii) If Sx
2 contains a cycle of length 4, then the vertices of Sx

2 have outdegree

one in Sx
2 . As in the previous case, the vertices in Sx

2 cannot be con-

nected to vertices from Sx
1 or x. Moreover, the vertices of Sx

2 must be

connected to at least four vertices from a set W of at most five vertices

of G, so |W | = 4 or 5 (if |W | = 4 the argument is similar). Assume

that |W | = 5. Since u and u′ have outdegree 2 in Sx
1 , then each one

of them is connected to three vertices in Sx
2 . Therefore, let v ∈ Sx

2 be

such that u is connected to v. Then v is connected to four vertices in

W . Let y ∈ W be such that v is not connected to y. The vertices of

W −{y} can be connected to x and y. The vertices of W −{y} cannot

be connected to u, otherwise we obtain a cycle of length 3. The sub-

graph F = Sx
2

⋃
(W − {y})

⋃
{u′} contains 9 vertices and has minimal

outdegree 3, so by the minimality of G, F contains a cycle of length at

most
⌈
9
3

⌉
= 3, and we are done.

Therefore, the conjecture holds for t = 3.

(3) If t = 4, then
⌈
1
2
t
⌉

=
⌈
4
2

⌉
= 2, so i = 1 or 2, but i 6= 1, so i = 2. Therefore,

|Sx
1 | = 5, and |Sx

2 | = 4. Since the outdegree of each vertex in Sx
1 is at least one

in Sx
1 , then by Proposition 1.2.2, Sx

1 contains a cycle, and since t = 4, then G
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cannot contain a cycle of length 4, so Sx
1 contains a cycle of length 5. But Sx

2

is acyclic, so there exists a vertex v ∈ Sx
2 such that v has outdegree zero in Sx

2 .

The vertex v must be connected to a set W ′ of vertices of G − {x}
⋃
T x
2 , where

|W ′| = 5. Now, since t = 4, then

⌈
n

k1

⌉
= 4, so 16 ≤ n ≤ 20. Let W ′′ = W −W ′,

where W = G− {x}
⋃
T x
2 . Clearly, |W ′′| = 1, 2, 3, 4, or 5. Note that the vertices

in Sx
2 cannot be connected to vertices from Sx

1 or x, otherwise we obtain a cycle

of length at most 3. We consider all possible values of n:

(a) If n = 16, then |W | = 6, which implies that |W ′| = 5, and |W ′′| = 1.

Note that the vertices in W ′ cannot be connected to vertices from Sx
1 or x,

otherwise we obtain a cycle of length at most 4. The vertices of Sx
2

⋃
W ′ can

be connected to the vertex in W ′′. Therefore, the subgraph F = Sx
2

⋃
W ′

contains 9 vertices and has minimal outdegree 4, so by the minimality of G,

F contains a cycle of length at most
⌈
9
4

⌉
= 3, and we are done.

(b) If n = 17, then |W | = 7, which implies that |W ′| = 5, and |W ′′| = 2. The

vertices of Sx
2

⋃
W ′ can be connected to the vertices in W ′′. Therefore, the

subgraph F = Sx
2

⋃
W ′ contains 9 vertices and has outdegree at least 3, so

by the minimality of G, F contains a cycle of length at most
⌈
9
3

⌉
= 3, and

we are done.

(c) If n = 18, then |W | = 8, which implies that |W ′| = 5, and |W ′′| = 3. First, if

the vertices in Sx
2

⋃
W ′ are connected to at most 2 vertices in W ′′, then the

subgraph F = Sx
2

⋃
W ′ contains 9 vertices and has outdegree at least 3, so

by the minimality of G, F contains a cycle of length at most
⌈
9
3

⌉
= 3, and

we are done. This implies that there exists at least one vertex in Sx
2

⋃
W ′

which is connected to the three vertices in W ′′. Some vertices of W ′′ may

be connected to x. Observe that the vertices of W ′′ cannot be connected to

the vertices in Sx
1 , otherwise we obtain a cycle of length 4. Therefore, the

subgraph F = Sx
2

⋃
W contains 12 vertices and has minimal outdegree 4, so

by the minimality of G, F contains a cycle of length at most
⌈
12
4

⌉
= 3, and

we are done.

(d) If n = 19, then |W | = 9, which implies that |W ′| = 5, and |W ′′| = 4. First,

if the vertices in Sx
2

⋃
W ′ are connected to at most 2 vertices in W ′′. Then,

the subgraph F = Sx
2

⋃
W ′ contains 9 vertices and has outdegree at least 3,
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so by the minimality of G, F contains a cycle of length at most
⌈
9
3

⌉
= 3, and

we are done.

Next, if the vertices in Sx
2

⋃
W ′ are connected to a set H of three vertices

in W ′′, then there exists a vertex u ∈ W ′′ such that the vertices in Sx
2

⋃
W ′

are not connected to u. Some vertices in H may be connected to u and x.

Therefore, the subgraph F = Sx
2

⋃
W − {u} contains 12 vertices and has

minimal outdegree 3, so by the minimality of G, F contains a cycle of length

at most
⌈
12
3

⌉
= 4, and we are done.

Finally, if the vertices in Sx
2

⋃
W ′ are connected to the four vertices in W ′′.

Some vertices in W ′′ which can be connected to x. But no vertex of W ′′ can

be connected to vertices from Sx
1 . The subgraph F = Sx

2

⋃
W contains 13

vertices and has minimal outdegree 4, so by the minimality of G, F contains

a cycle of length at most
⌈
13
4

⌉
= 4, and we are done.

(e) If n = 20, then |W | = 10, which implies that |W ′| = 5, and |W ′′| = 5. First,

if the vertices in Sx
2

⋃
W ′ are connected to at most 2 vertices in W ′′. Then,

the subgraph F = Sx
2

⋃
W ′ contains 9 vertices and has outdegree at least 3,

so by the minimality of G, F contains a cycle of length at most
⌈
9
3

⌉
= 3, and

we are done.

Next, if the vertices of Sx
2

⋃
W ′ are connected to three vertices in W ′′, then

there exists two vertices u, u′ ∈ W ′′ such that the vertices in Sx
2

⋃
W ′ are not

connected to u and u′. Now, we consider the following two cases: First, if

the vertices of Sx
2 are connected to the three vertices in W ′′ − {u, u′}, then

these three vertices cannot be connected to vertices from Sx
1 or x, otherwise

we obtain a cycle of length at most 4. These three vertices in W ′′ − {u, u′}
can be connected to u and u′. Therefore, the subgraph F = Sx

2

⋃
W −{u, u′}

contains 12 vertices and has minimal outdegree 3, so by the minimality of

G, F contains a cycle of length at most
⌈
12
3

⌉
= 4, and we are done. Next,

if the vertices in Sx
2 are connected to at most two vertices of W ′′ − {u, u′},

then delete the three vertices in W ′′ − {u, u′}, hence the vertices in W ′ have

outdegree at least 2, and the vertices in Sx
2 have outdegree at least 3. Now,

delete v, then the vertices of W ′ have outdegree at least 2, and the vertices

in Sx
2 − {v} have outdegree at least 2. Then, subgraph F = Sx

2

⋃
W ′ − {v}

contains 8 vertices and has outdegree at least 2, so by the minimality of G,
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F contains a cycle of length at most
⌈
8
2

⌉
= 4, and we are done.

Now, if the vertices of Sx
2

⋃
W ′ are connected to a set H of four vertices in

W ′′, then there exists a vertex u ∈ W ′′ such that the vertices in Sx
2

⋃
W ′ are

not connected to it. There exists a vertex y ∈ H such that y has indegree

zero in H, otherwise we get a cycle of length at most 4. Now, delete y, then

the vertices in Sx
2

⋃
W ′ have outdegree 4. Some vertices of H − {y} which

can be connected to u and x. The vertices of H − {y} have outdegree 3 in

Sx
2

⋃
W − {u, y}. Moreover, the vertices in H − {y} cannot be connected to

vertices from Sx
1 , otherwise we get a cycle of length at most 4. Therefore,

the subgraph F = Sx
2

⋃
W − {u, y} contains 12 vertices and has minimal

outdegree 3, so by the minimality of G, F contains a cycle of length at most⌈
12
3

⌉
= 4, and we are done.

Finally, if the vertices in Sx
2

⋃
W ′ are connected to the five vertices in W ′′.

Some vertices in W ′′ can be connected to x but not to any vertex of Sx
1 . Then,

the subgraph F = Sx
2

⋃
W contains 14 vertices and has minimal outdegree

at least 4, so by the minimality of G, F contains a cycle of length at most⌈
14
4

⌉
= 4, and we are done. Therefore, the conjecture holds for t = 4.

(4) If t = 5, then
⌈
1
2
t
⌉

=
⌈
5
2

⌉
= 3, so i = 1, 2, or 3. But i 6= 1, 2, so i = 3. Therefore,

|Sx
1 | = 5, |Sx

3 | = 4, but we know that |T x
3 | < 3k1 = 15, so |T x

3 | ≤ 14, which implies

that |Sx
1 | + |Sx

2 | + |Sx
3 | ≤ 14, so 5 + |Sx

2 | + 4 ≤ 14, and so |Sx
2 | ≤ 5, so |Sx

2 | = 5,

otherwise if |Sx
2 | ≤ 4, then |T x

2 | = |Sx
1 | + |Sx

2 | ≤ 5 + 4 = 9 < 10 = 2k1, which

contradicts the minimality of i. Now, the vertices in Sx
2 are connected to at most

4 vertices in Sx
3 , so the vertices of Sx

2 have outdegree at least one in T x
2 . Observe

that Sx
2 contains a vertex y of indegree zero in Sx

2 , otherwise we obtain a cycle of

length at most 5 in Sx
2 . Then, Sx

2 − {y} contains four vertices each of which has

outdegree at least one in T x
2 − {y}. The vertices in Sx

1 have outdegree at least 4

in T x
2 − {y}. Repeating this process another two times we deduce the existence

of two vertices w and z in Sx
2 − {y} each of which has indegree zero in Sx

2 − {y}
and Sx

2 − {y, w}, respectively. Consider Sx
2 − {y, w, z}, it contains two vertices

which have outdegree at least one in T x
2 − {y, w, z}, and the vertices in Sx

1 have

outdegree at least 2 in T x
2 − {y, w, z}, which implies that T x

2 − {y, w, z} contains

7 vertices. But since each vertex in T x
2 − {y, w, z} has outdegree at least one in

T x
2 − {y, w, z}, then T x

2 − {y, w, z} contains a cycle of length at most 7, so we
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have the following cases:

(a) If the smallest cycle in T x
2 − {y, w, z} is of length 7, then since there exists

at least one vertex u in T x
2 − {y, w, z} which has outdegree at least 2 in

T x
2 − {y, w, z}, u must be connected to another vertex in the cycle, so we

obtain a cycle of length at most 6 in T x
2 − {y, w, z}, a contradiction.

(b) If the smallest cycle in T x
2 − {y, w, z} is of length 6, then there exists one

vertex u outside this cycle. Therefore, since u has outdegree at least one in

T x
2 −{y, w, z}, then there is at least four vertices in the cycle which have out-

degree at least 2 in T x
2 − {y, w, z}. These four vertices cannot be connected

to more than one vertex in the cycle, otherwise we obtain a cycle of length

at most 5, so these four vertices must be connected to u. But u must be

connected to at least one vertex in the cycle, so clearly we obtain a cycle of

length at most 4, and we are done. Therefore, the conjecture holds for t = 5.

(5) If t = 6, then
⌈
1
2
t
⌉

= 3, so i = 1, 2, or 3. As in the case t = 5, we see that i = 3,

and so G contains a cycle of length at most 5, so the conjecture holds for t = 6.

(6) If t = 7, then
⌈
1
2
t
⌉

=
⌈
7
2

⌉
= 4, so i = 1, 2, 3, or 4, but i 6= 1, 2, 3. Therefore,

i = 4, so |Sx
1 | = 5, |Sx

4 | = 4, and we know that |T x
4 | < 4k1 = 20, so |T x

4 | ≤ 19,

which implies that |Sx
1 | + |Sx

2 | + |Sx
3 | + |Sx

4 | ≤ 19, so 5 + |Sx
2 | + |Sx

3 | + 4 ≤ 19,

so |Sx
2 | + |Sx

3 | ≤ 10, so |Sx
2 | + |Sx

3 | = 10, otherwise if |Sx
2 | + |Sx

3 | ≤ 9, then

|T x
3 | = |Sx

1 |+ |Sx
2 |+ |Sx

3 | ≤ 5+9 = 14, so |T x
3 | ≤ 14 < 15 = 3k1, which contradicts

the minimality of i. If |Sx
2 |+ |Sx

3 | = 10, then |Sx
2 | ≥ 5, otherwise if |Sx

2 | ≤ 4, then

|T x
2 | = |Sx

1 | + |Sx
2 | ≤ 9 < 2k1, which contradicts the minimality of i, so the cases

are:

(a) |Sx
2 | = 9, |Sx

3 | = 1, then the subgraph T x
2 has 14 vertices and outdegree at
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least 4, so by the minimality of G, T x
2 contains a cycle of length at most⌈

14
4

⌉
= 4, and we are done.

(b) |Sx
2 | = 8, |Sx

3 | = 2, then T x
2 has 13 vertices and outdegree at least 3, so it

contains a cycle of length at most
⌈
13
3

⌉
= 5, and we are done.

(c) |Sx
2 | = 7, |Sx

3 | = 3, then T x
2 has 12 vertices and outdegree at least 2, so it

contains a cycle of length at most
⌈
12
2

⌉
= 6, and we are done.

(d) If |Sx
2 | = 6, |Sx

3 | = 4, then the vertices in Sx
2 are connected to at most 4

vertices in Sx
3 . Consider Sx

2 , each vertex in Sx
2 has outdegree at least one in

T x
2 , so Sx

2 contains a vertex y which has indegree zero in Sx
2 , otherwise Sx

2 will

contain a cycle of length at most 6, and we are done. The vertices in Sx
2 −{y}

have outdegree at least one in T x
2 −{y}, and the vertices in Sx

1 have outdegree

at least 4 in T x
2 −{y}. Repeating this process another three times we deduce

the existence of three vertices u,w, and z in Sx
2 − {y} each of which has

indegree zero in Sx
2 − {y}, Sx

2 − {y, u}, and Sx
2 − {y, u, w}, respectively. The

vertices in Sx
2−{y, u, w, z} have outdegree at least one in T x

2 −{y, u, w, z}, and

the vertices in Sx
1 have outdegree at least one in T x

2 −{y, u, w, z}. Therefore,

the subgraph F = T x
2 − {y, u, w, z} contains 7 vertices and has outdegree at

least one, so by the minimality of G, F contains a cycle of length at most 7,

and we are done.

(e) If |Sx
2 | = 5, |Sx

3 | = 5, then each vertex in Sx
3 is connected to at most 4

vertices in Sx
4 . Proceeding as above, we deduce that Sx

3 contains four vertices

y, u, w, and z each of which has indegree zero in Sx
3 , Sx

3 − {y}, Sx
3 − {y, u},

Sx
3 − {y, u, w}, respectively. Note that Sx

3 − {y, u, w, z} contains one vertex

v which has outdegree at least one in T x
3 − {y, u, w, z}. The vertices in Sx

2

have outdegree at least one in T x
3 − {y, u, w, z}, and the vertices in Sx

1 have

outdegree five in T x
3 − {y, u, w, z}. Since v has outdegree at least one in

T x
3 − {y, u, w, z}, then it must be connected to at least one vertex in T x

3 −
{y, u, w, z}, so we consider the following cases:

(i) If v is connected to at least one vertex in Sx
1 . Proceeding as above,

we deduce that Sx
2 contains four vertices y′, u′, w′, and z′ each of which

has indegree zero in Sx
2 , Sx

2 − {y′}, Sx
2 − {y′, u′}, and Sx

2 − {y′, u′, w′},
respectively. Then, Sx

2 − {y′, u′, w′, z′} contains one vertex v′ which has

outdegree at least one in T x
3 − {y, u, w, z, y′, u′, w′, z′}, and the vertices
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in Sx
1 have outdegree at least one in T x

3 −{y, u, w, z, y′, u′, w′, z′}, so the

subgraph F = T x
3 − {y, u, w, z, y′, u′, w′, z′} contains 7 vertices and has

outdegree at least one, so by the minimality of G, F contains a cycle of

length at most 7, and we are done.

(ii) If v is connected to at least one vertex v′ in Sx
2 . First, if v′ is con-

nected to at least one vertex of Sx
1 , then as above the subgraph F =

T x
2 − {y′, u′, w′, z′} contains 6 vertices each of which has outdegree at

least one, so by the minimality of G, F contains a cycle of length at

most 6, and we are done. This implies that v′ cannot be connected to

any vertex of Sx
1 , hence v′ must be connected to vertices in Sx

2

⋃
Sx
3 .

The outdegree of v′ is five, and since (v, v′) is an arc, then v′ must be

connected to at least one vertex in Sx
2 . This implies that there exists a

path in Sx
2 of length 1, 2, 3, or 4.

Now, if there exists a path P in Sx
2 that starts at v′ and ends at a vertex

z in Sx
2 which is connected to v, then since the length of ′P is at most

4, we get a cycle of length at most 6, and we are done. We conclude

that all vertices of the path P are not connected to v. Let P be the

maximal path that starts at v′ in Sx
2 and ends at w′′. The length of this

path is l ∈ {1, 2, 3, 4}.
Now, we know that Sx

1 contains a vertex x5 which has outdegree 5 out-

side Sx
1 , otherwise Sx

1 will contain a cycle of length at most 5. Moreover,

Sx
1 − {x5} contains a vertex x4 which has outdegree at least 4 outside

Sx
1 −{x5}, otherwise Sx

1 −{x5} will contain a cycle of length at most 4.

Therefore, we see that Sx
1 = {x1, x2, x3, x4, x5}, where xi has outdegree

at least i outside Sx
1 for i ∈ {1, 2, 3, 4, 5}.

Now, we look at the maximal path P mentioned above.
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The outdegree of w′′ in T x
2

⋃
{v} is at least one, but w′′ cannot be con-

nected to v, because otherwise we get a cycle of length at most 6. Also,

note that the outdegree of w′′ is zero in Sx
2 , because it is the terminal

vertex of a maximal path. Hence, there exists xi ∈ Sx
1 such that (w′′, xi)

is an arc. Obviously, i 6= 5, so i ∈ {1, 2, 3, 4}.
If i = 4 and (w′′, x4) is an arc, then x4 cannot be connected to any

vertex of P, so it must be connected to at least 4 vertices out of

5− (l + 1) = 4− l, which is impossible.

If i = 3 and (w′′, x3) is an arc, then x3 must be connected to at least 3

vertices out of 4− l, which implies that l = 1 and we have the following

graph:

The vertex x3 is connected to exactly three vertices of Sx
2 , and it cannot

be connected to x4 or x5. Hence x3 is connected to x2 and x1. Similarly,

x2 cannot be connected to v′ and w′′, so it is connected to at least two

vertices in Sx
1 . These vertices are x1 and x4. But, x4 is connected to v′ or

w′′. We got the cycle (x3, x2, x4, v
′, w′′, x3) or the cycle (x3, x2, x4, w

′′, x3)

of length 6 or 5, respectively, and we are done.

If i = 2 and (w′′, x2) is an arc, we can follow the above argument to

conclude that l = 1 or 2. Let us deal first with the case l = 2, we have

the following graph:

Clearly, x2 cannot be connected to x5 or a vertex of P, so it must be
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connected to x1, x3, and x4. But, x4 is connected to at least one vertex

of P, which leads to a cycle of length at most 5. If l = 1, we have the

following graph:

The vertex x2 must have outdegree at least two in Sx
1 , and following

the above argument, we conclude that x2 must be connected to both x1

and x3. Also, x3 must be connected to both x1 and x4. But since x4 is

connected to either v′ or w′′, we get the cycles (x4, v
′, w′′, x2, x3, x4) or

(x4, w
′′, x2, x3, x4), and we are done.

Finally, we deal with the case i = 1, which implies that l = 1, 2, or 3. If

l = 3, we get the graph:

Here, x1 must have outdegree at least 4 in Sx
1 , which leads to a cycle of

length 6. If l = 2, we get the graph:

Here, x1 must have outdegree at least 3 in Sx
1 , and since it cannot be

connected to x5, it must be connected to x4. But x4 must be connected

to at least one vertex of P which creates a cycle of length at most 5. If
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l = 1, we have the graph:

Here, x1 must have outdegree at least 2 in Sx
1 , but it cannot be con-

nected to x4 or x5, so (x1, x2) and (x1, x3) are arcs. Also, x3 must be

connected to two vertices in Sx
1 −{x1, x3, x5} = {x2, x4}. Hence, (x3, x4)

is an arc, which creates a cycle of length at most 5, and we are done.

Therefore, the conjecture holds for t = 7.

Now, we proved that the C-H conjecture holds for k1 = 5.

Since t ≤ 11, then
⌈n

5

⌉
≤ 11, which implies that n ≤ 55, so we showed that the C-H

conjecture holds for graphs with at most 55 vertices and outdegree k1 = 5, which is a

sharper upper bound than that given in Theorem 4.2.1.

4.4 Conclusion

We proved the C-H conjecture for k ≤ 5, but as can be seen the case k = 5 was very

long, and for other small values of k the reasonably small graph gets larger and larger.

Therefore, other tools must be developed in order to resolve the C-H conjecture.
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